The geometric genus of hypersurface singularities
Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 825-851.

Voir la notice de l'article provenant de la source EMS Press

Using the path lattice cohomology we provide a conceptual topological characterization of the geometric genus for certain complex normal surface singularities with rational homology sphere links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface singularities.
DOI : 10.4171/jems/604
Classification : 32-XX, 14-XX, 55-XX, 57-XX
Keywords: Normal surface singularities, hypersurface singularities, links of singularities, Newton non-degenerate singularities, geometric genus, plumbing graphs, Q-homology spheres, lattice cohomology, path lattice cohomology, Heegaard–Floer homology, Seiberg–Witten invariant
@article{JEMS_2016_18_4_a4,
     author = {Andr\'as N\'emethi and Baldur Sigurdsson},
     title = {The geometric genus of hypersurface singularities},
     journal = {Journal of the European Mathematical Society},
     pages = {825--851},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2016},
     doi = {10.4171/jems/604},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/604/}
}
TY  - JOUR
AU  - András Némethi
AU  - Baldur Sigurdsson
TI  - The geometric genus of hypersurface singularities
JO  - Journal of the European Mathematical Society
PY  - 2016
SP  - 825
EP  - 851
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/604/
DO  - 10.4171/jems/604
ID  - JEMS_2016_18_4_a4
ER  - 
%0 Journal Article
%A András Némethi
%A Baldur Sigurdsson
%T The geometric genus of hypersurface singularities
%J Journal of the European Mathematical Society
%D 2016
%P 825-851
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/604/
%R 10.4171/jems/604
%F JEMS_2016_18_4_a4
András Némethi; Baldur Sigurdsson. The geometric genus of hypersurface singularities. Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 825-851. doi : 10.4171/jems/604. http://geodesic.mathdoc.fr/articles/10.4171/jems/604/

Cité par Sources :