The geometric genus of hypersurface singularities
Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 825-851
Voir la notice de l'article provenant de la source EMS Press
Using the path lattice cohomology we provide a conceptual topological characterization of the geometric genus for certain complex normal surface singularities with rational homology sphere links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface singularities.
Classification :
32-XX, 14-XX, 55-XX, 57-XX
Keywords: Normal surface singularities, hypersurface singularities, links of singularities, Newton non-degenerate singularities, geometric genus, plumbing graphs, Q-homology spheres, lattice cohomology, path lattice cohomology, Heegaard–Floer homology, Seiberg–Witten invariant
Keywords: Normal surface singularities, hypersurface singularities, links of singularities, Newton non-degenerate singularities, geometric genus, plumbing graphs, Q-homology spheres, lattice cohomology, path lattice cohomology, Heegaard–Floer homology, Seiberg–Witten invariant
@article{JEMS_2016_18_4_a4,
author = {Andr\'as N\'emethi and Baldur Sigurdsson},
title = {The geometric genus of hypersurface singularities},
journal = {Journal of the European Mathematical Society},
pages = {825--851},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2016},
doi = {10.4171/jems/604},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/604/}
}
TY - JOUR AU - András Némethi AU - Baldur Sigurdsson TI - The geometric genus of hypersurface singularities JO - Journal of the European Mathematical Society PY - 2016 SP - 825 EP - 851 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/604/ DO - 10.4171/jems/604 ID - JEMS_2016_18_4_a4 ER -
András Némethi; Baldur Sigurdsson. The geometric genus of hypersurface singularities. Journal of the European Mathematical Society, Tome 18 (2016) no. 4, pp. 825-851. doi: 10.4171/jems/604
Cité par Sources :