The Cauchy problem for the two dimensional Euler–Poisson system
Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2211-2266.

Voir la notice de l'article provenant de la source EMS Press

The Euler-Poisson system is a fundamental two-fluid model to describe the dynamics of the plasma consisting of compressible electrons and a uniform ion background. In the 3D case Guo [7] first constructed a global smooth irrotational solution by using the dispersive Klein-Gordon effect. It has been conjectured that same results should hold in the two-dimensional case. In our recent work [13], we proved the existence of a family of smooth solutions by constructing the wave operators for the 2D system. In this work we completely settle the 2D Cauchy problem.
DOI : 10.4171/jems/486
Classification : 35-XX, 00-XX
Keywords: Euler-Poisson, Klein-Gordon, normal form, global well-posedness
@article{JEMS_2014_16_10_a4,
     author = {Dong Li and Yifei Wu},
     title = {The {Cauchy} problem for the two dimensional {Euler{\textendash}Poisson} system},
     journal = {Journal of the European Mathematical Society},
     pages = {2211--2266},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {2014},
     doi = {10.4171/jems/486},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/486/}
}
TY  - JOUR
AU  - Dong Li
AU  - Yifei Wu
TI  - The Cauchy problem for the two dimensional Euler–Poisson system
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 2211
EP  - 2266
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/486/
DO  - 10.4171/jems/486
ID  - JEMS_2014_16_10_a4
ER  - 
%0 Journal Article
%A Dong Li
%A Yifei Wu
%T The Cauchy problem for the two dimensional Euler–Poisson system
%J Journal of the European Mathematical Society
%D 2014
%P 2211-2266
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/486/
%R 10.4171/jems/486
%F JEMS_2014_16_10_a4
Dong Li; Yifei Wu. The Cauchy problem for the two dimensional Euler–Poisson system. Journal of the European Mathematical Society, Tome 16 (2014) no. 10, pp. 2211-2266. doi : 10.4171/jems/486. http://geodesic.mathdoc.fr/articles/10.4171/jems/486/

Cité par Sources :