Quantum expanders and geometry of operator spaces
Journal of the European Mathematical Society, Tome 16 (2014) no. 6, pp. 1183-1219.

Voir la notice de l'article provenant de la source EMS Press

We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the “growth” of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of MN​-spaces needed to represent (up to a constant C>1) the MN​-version of the n-dimensional operator Hilbert space OHn​ as a direct sum of copies of MN​. We show that, when C is close to 1, this multiplicity grows as expβnN2 for some constant β>0. The main idea is to relate quantum expanders with “smooth” points on the matricial analogue of the Euclidean unit sphere. This generalizes to operator spaces a classical geometric result on n-dimensional Hilbert space (corresponding to N=1). In an appendix, we give a quick proof of an inequality (related to Hastings's previous work) on random unitary matrices that is crucial for this paper.
DOI : 10.4171/jems/458
Classification : 46-XX, 47-XX
Keywords: Quantum expander, operator space, completely bounded map, smooth point
@article{JEMS_2014_16_6_a2,
     author = {Gilles Pisier},
     title = {Quantum expanders and geometry of operator spaces},
     journal = {Journal of the European Mathematical Society},
     pages = {1183--1219},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2014},
     doi = {10.4171/jems/458},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/458/}
}
TY  - JOUR
AU  - Gilles Pisier
TI  - Quantum expanders and geometry of operator spaces
JO  - Journal of the European Mathematical Society
PY  - 2014
SP  - 1183
EP  - 1219
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/458/
DO  - 10.4171/jems/458
ID  - JEMS_2014_16_6_a2
ER  - 
%0 Journal Article
%A Gilles Pisier
%T Quantum expanders and geometry of operator spaces
%J Journal of the European Mathematical Society
%D 2014
%P 1183-1219
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/458/
%R 10.4171/jems/458
%F JEMS_2014_16_6_a2
Gilles Pisier. Quantum expanders and geometry of operator spaces. Journal of the European Mathematical Society, Tome 16 (2014) no. 6, pp. 1183-1219. doi : 10.4171/jems/458. http://geodesic.mathdoc.fr/articles/10.4171/jems/458/

Cité par Sources :