Quantization of Drinfeld Zastava in type $A$
Journal of the European Mathematical Society, Tome 16 (2014) no. 2, pp. 235-271
Voir la notice de l'article provenant de la source EMS Press
Drinfeld Zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of the affine Lie algebra sl^n. We introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the Zastava space bijectively at the level of complex points. The natural Poisson structure on the Zastava space can be described on Z in terms of Hamiltonian reduction of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra. The quantum Hamiltonian reduction of the corresponding quotient of its universal enveloping algebra produces a quantization Y of the coordinate ring of Z. The same quantization was obtained in the finite (as opposed to the affine) case generically in [4]. We prove that, for generic values of quantization parameters, Y is a quotient of the affine Borel Yangian.
Classification :
19-XX, 22-XX, 37-XX
Keywords: q-difference Toda lattice, Equivariant %K-theory, Laumon compactification.
Keywords: q-difference Toda lattice, Equivariant %K-theory, Laumon compactification.
@article{JEMS_2014_16_2_a1,
author = {Michael Finkelberg and Leonid Rybnikov},
title = {Quantization of {Drinfeld} {Zastava} in type $A$},
journal = {Journal of the European Mathematical Society},
pages = {235--271},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2014},
doi = {10.4171/jems/432},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/432/}
}
TY - JOUR AU - Michael Finkelberg AU - Leonid Rybnikov TI - Quantization of Drinfeld Zastava in type $A$ JO - Journal of the European Mathematical Society PY - 2014 SP - 235 EP - 271 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/432/ DO - 10.4171/jems/432 ID - JEMS_2014_16_2_a1 ER -
Michael Finkelberg; Leonid Rybnikov. Quantization of Drinfeld Zastava in type $A$. Journal of the European Mathematical Society, Tome 16 (2014) no. 2, pp. 235-271. doi: 10.4171/jems/432
Cité par Sources :