A symmetry problem in the calculus of variations
Journal of the European Mathematical Society, Tome 8 (2006) no. 1, pp. 139-154.

Voir la notice de l'article provenant de la source EMS Press

We consider a class of integral functionals defined in a Sobolev space of functions vanishing at the boundary of a nonempty bounded connected open n-dimensional set. We prove that, if the functional admits a minimizer depending only on the distance from the boundary, then that set must be a ball.
DOI : 10.4171/jems/41
Classification : 49-XX, 53-XX, 00-XX
Keywords: Minimizers of integral functionals, Distance function, Euler equation
@article{JEMS_2006_8_1_a4,
     author = {Graziano Crasta},
     title = {A symmetry problem in the calculus of variations},
     journal = {Journal of the European Mathematical Society},
     pages = {139--154},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2006},
     doi = {10.4171/jems/41},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/41/}
}
TY  - JOUR
AU  - Graziano Crasta
TI  - A symmetry problem in the calculus of variations
JO  - Journal of the European Mathematical Society
PY  - 2006
SP  - 139
EP  - 154
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/41/
DO  - 10.4171/jems/41
ID  - JEMS_2006_8_1_a4
ER  - 
%0 Journal Article
%A Graziano Crasta
%T A symmetry problem in the calculus of variations
%J Journal of the European Mathematical Society
%D 2006
%P 139-154
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/41/
%R 10.4171/jems/41
%F JEMS_2006_8_1_a4
Graziano Crasta. A symmetry problem in the calculus of variations. Journal of the European Mathematical Society, Tome 8 (2006) no. 1, pp. 139-154. doi : 10.4171/jems/41. http://geodesic.mathdoc.fr/articles/10.4171/jems/41/

Cité par Sources :