A symmetry problem in the calculus of variations
Journal of the European Mathematical Society, Tome 8 (2006) no. 1, pp. 139-154
Cet article a éte moissonné depuis la source EMS Press
We consider a class of integral functionals defined in a Sobolev space of functions vanishing at the boundary of a nonempty bounded connected open n-dimensional set. We prove that, if the functional admits a minimizer depending only on the distance from the boundary, then that set must be a ball.
Classification :
49-XX, 53-XX, 00-XX
Keywords: Minimizers of integral functionals, Distance function, Euler equation
Keywords: Minimizers of integral functionals, Distance function, Euler equation
@article{JEMS_2006_8_1_a4,
author = {Graziano Crasta},
title = {A symmetry problem in the calculus of variations},
journal = {Journal of the European Mathematical Society},
pages = {139--154},
year = {2006},
volume = {8},
number = {1},
doi = {10.4171/jems/41},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/41/}
}
Graziano Crasta. A symmetry problem in the calculus of variations. Journal of the European Mathematical Society, Tome 8 (2006) no. 1, pp. 139-154. doi: 10.4171/jems/41
Cité par Sources :