Submanifold averaging in riemannian and symplectic geometry
Journal of the European Mathematical Society, Tome 8 (2006) no. 1, pp. 77-122.

Voir la notice de l'article provenant de la source EMS Press

We give a construction to obtain canonically an “isotropic average” of given C1-close isotropic submanifolds of a symplectic manifold. To do so we use an improvement of Weinstein's submanifold averaging theorem (obtained in collaboration with H. Karcher) and apply “Moser's trick”. We also present an application to Hamiltonian group actions.
DOI : 10.4171/jems/39
Classification : 58-XX, 00-XX
Keywords: averaging, isotropic, Lagrangian, Legendrian, parallel tubes, shape operators
@article{JEMS_2006_8_1_a2,
     author = {Marco Zambon},
     title = {Submanifold averaging in riemannian and symplectic geometry},
     journal = {Journal of the European Mathematical Society},
     pages = {77--122},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2006},
     doi = {10.4171/jems/39},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/39/}
}
TY  - JOUR
AU  - Marco Zambon
TI  - Submanifold averaging in riemannian and symplectic geometry
JO  - Journal of the European Mathematical Society
PY  - 2006
SP  - 77
EP  - 122
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/39/
DO  - 10.4171/jems/39
ID  - JEMS_2006_8_1_a2
ER  - 
%0 Journal Article
%A Marco Zambon
%T Submanifold averaging in riemannian and symplectic geometry
%J Journal of the European Mathematical Society
%D 2006
%P 77-122
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/39/
%R 10.4171/jems/39
%F JEMS_2006_8_1_a2
Marco Zambon. Submanifold averaging in riemannian and symplectic geometry. Journal of the European Mathematical Society, Tome 8 (2006) no. 1, pp. 77-122. doi : 10.4171/jems/39. http://geodesic.mathdoc.fr/articles/10.4171/jems/39/

Cité par Sources :