Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 923-948
Cet article a éte moissonné depuis la source EMS Press
We provide a rigorous justification of the classical linearization approach in plasticity. By taking the small-deformations limit, we prove via Γ-convergence for rate-independent processes that energetic solutions of the quasi-static finite-strain elastoplasticity system converge to the unique strong solution of linearized elastoplasticity.
Classification :
74-XX, 49-XX, 00-XX
Keywords: Finite-strain elastoplasticity, linearized elastoplasticity, gamma-convergence, rate-independent processes
Keywords: Finite-strain elastoplasticity, linearized elastoplasticity, gamma-convergence, rate-independent processes
@article{JEMS_2013_15_3_a8,
author = {Alexander Mielke and Ulisse Stefanelli},
title = {Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity},
journal = {Journal of the European Mathematical Society},
pages = {923--948},
year = {2013},
volume = {15},
number = {3},
doi = {10.4171/jems/381},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/381/}
}
TY - JOUR AU - Alexander Mielke AU - Ulisse Stefanelli TI - Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity JO - Journal of the European Mathematical Society PY - 2013 SP - 923 EP - 948 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/381/ DO - 10.4171/jems/381 ID - JEMS_2013_15_3_a8 ER -
%0 Journal Article %A Alexander Mielke %A Ulisse Stefanelli %T Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity %J Journal of the European Mathematical Society %D 2013 %P 923-948 %V 15 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/381/ %R 10.4171/jems/381 %F JEMS_2013_15_3_a8
Alexander Mielke; Ulisse Stefanelli. Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 923-948. doi: 10.4171/jems/381
Cité par Sources :