Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 923-948.

Voir la notice de l'article provenant de la source EMS Press

We provide a rigorous justification of the classical linearization approach in plasticity. By taking the small-deformations limit, we prove via Γ-convergence for rate-independent processes that energetic solutions of the quasi-static finite-strain elastoplasticity system converge to the unique strong solution of linearized elastoplasticity.
DOI : 10.4171/jems/381
Classification : 74-XX, 49-XX, 00-XX
Keywords: Finite-strain elastoplasticity, linearized elastoplasticity, gamma-convergence, rate-independent processes
@article{JEMS_2013_15_3_a8,
     author = {Alexander Mielke and Ulisse Stefanelli},
     title = {Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity},
     journal = {Journal of the European Mathematical Society},
     pages = {923--948},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     doi = {10.4171/jems/381},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/381/}
}
TY  - JOUR
AU  - Alexander Mielke
AU  - Ulisse Stefanelli
TI  - Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 923
EP  - 948
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/381/
DO  - 10.4171/jems/381
ID  - JEMS_2013_15_3_a8
ER  - 
%0 Journal Article
%A Alexander Mielke
%A Ulisse Stefanelli
%T Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity
%J Journal of the European Mathematical Society
%D 2013
%P 923-948
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/381/
%R 10.4171/jems/381
%F JEMS_2013_15_3_a8
Alexander Mielke; Ulisse Stefanelli. Linearized plasticity is the evolutionary $\Gamma$-limit of finite plasticity. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 923-948. doi : 10.4171/jems/381. http://geodesic.mathdoc.fr/articles/10.4171/jems/381/

Cité par Sources :