Invariants for the modular cyclic group of prime order via classical invariant theory
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 775-803.

Voir la notice de l'article provenant de la source EMS Press

Let F be any field of characteristic p. It is well-known that there are exactly p inequivalent indecomposable representations V1​,V2​,...,Vp​ of Cp​ defined over F. Thus if V is any finite dimensional Cp​-representation there are non-negative integers 0≤n1​,n2​,...,nk​≤p−1 such that V≅⊕i=1k​Vni​+1​. It is also well-known there is a unique (up to equivalence) d+1 dimensional irreducible complex representation of SL2​(C) given by its action on the space Rd​ of d forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation of the ring of Cp​-invariants F[⊕i=1k​Vni​+1​]Cp​ to the computation of the classical ring of invariants (or covariants) C[R1​⊕(⊕i=1k​Rni​​)]SL2​(C). This shows that the problem of computing modular Cp​ invariants is equivalent to the problem of computing classical SL2​(C) invariants. This allows us to compute for the first time the ring of invariants for many representations of Cp​. In particular, we easily obtain from this generators for the rings of vector invariants F[mV2​]Cp​, F[mV3​]Cp​ and F[mV4​]Cp​for all m∈N. This is the first computation of the latter two families of rings of invariants.
DOI : 10.4171/jems/376
Classification : 13-XX, 20-XX, 00-XX
Keywords: Modular invariant theory, cyclic group, classical invariant theory, Roberts' isomorphism
@article{JEMS_2013_15_3_a3,
     author = {David L. Wehlau},
     title = {Invariants for the modular cyclic group of prime order via classical invariant theory},
     journal = {Journal of the European Mathematical Society},
     pages = {775--803},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     doi = {10.4171/jems/376},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/376/}
}
TY  - JOUR
AU  - David L. Wehlau
TI  - Invariants for the modular cyclic group of prime order via classical invariant theory
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 775
EP  - 803
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/376/
DO  - 10.4171/jems/376
ID  - JEMS_2013_15_3_a3
ER  - 
%0 Journal Article
%A David L. Wehlau
%T Invariants for the modular cyclic group of prime order via classical invariant theory
%J Journal of the European Mathematical Society
%D 2013
%P 775-803
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/376/
%R 10.4171/jems/376
%F JEMS_2013_15_3_a3
David L. Wehlau. Invariants for the modular cyclic group of prime order via classical invariant theory. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 775-803. doi : 10.4171/jems/376. http://geodesic.mathdoc.fr/articles/10.4171/jems/376/

Cité par Sources :