Line bundles with partially vanishing cohomology
Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 731-754.

Voir la notice de l'article provenant de la source EMS Press

Define a line bundle L on a projective variety to be q-ample, for a natural number q, if tensoring with high powers of L kills coherent sheaf cohomology above dimension q. Thus 0-ampleness is the usual notion of ampleness. We show that q-ampleness of a line bundle on a projective variety in characteristic zero is equivalent to the vanishing of an explicit finite list of cohomology groups. It follows that q-ampleness is a Zariski open condition, which is not clear from the definition.
DOI : 10.4171/jems/374
Classification : 14-XX, 32-XX, 00-XX
Keywords: Vanishing theorems, ample line bundles, q-ample line bundles, Castelnuovo–Mumford regularity, Koszul algebras, q-convexity
@article{JEMS_2013_15_3_a1,
     author = {Burt Totaro},
     title = {Line bundles with partially vanishing cohomology},
     journal = {Journal of the European Mathematical Society},
     pages = {731--754},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2013},
     doi = {10.4171/jems/374},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/374/}
}
TY  - JOUR
AU  - Burt Totaro
TI  - Line bundles with partially vanishing cohomology
JO  - Journal of the European Mathematical Society
PY  - 2013
SP  - 731
EP  - 754
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/374/
DO  - 10.4171/jems/374
ID  - JEMS_2013_15_3_a1
ER  - 
%0 Journal Article
%A Burt Totaro
%T Line bundles with partially vanishing cohomology
%J Journal of the European Mathematical Society
%D 2013
%P 731-754
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/374/
%R 10.4171/jems/374
%F JEMS_2013_15_3_a1
Burt Totaro. Line bundles with partially vanishing cohomology. Journal of the European Mathematical Society, Tome 15 (2013) no. 3, pp. 731-754. doi : 10.4171/jems/374. http://geodesic.mathdoc.fr/articles/10.4171/jems/374/

Cité par Sources :