Idempotent semigroups and tropical algebraic sets
Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 489-520.

Voir la notice de l'article provenant de la source EMS Press

The tropical semifield, i.e., the real numbers enhanced by the operations of addition and maximum, serves as a base of tropical mathematics. Addition is an abelian group operation, whereas the maximum defines an idempotent semigroup structure. We address the question of the geometry of idempotent semigroups, in particular, tropical algebraic sets carrying the structure of a commutative idempotent semigroup. We show that commutative idempotent semigroups are contractible, that systems of tropical polynomials, formed from univariate monomials, define subsemigroups with respect to coordinate-wise tropical addition (maximum); and, finally, we prove that the subsemigroups in the Euclidean space which are either tropical hypersurfaces, or tropical curves in the plane or in the three-space have the above polynomial description.
DOI : 10.4171/jems/309
Classification : 14-XX, 06-XX, 12-XX, 20-XX
Keywords: Tropical geometry, polyhedral complexes, tropical polynomials, idempotent semigroups, simple polynomials
@article{JEMS_2012_14_2_a5,
     author = {Zur Izhakian and Eugenii Shustin},
     title = {Idempotent semigroups and tropical algebraic sets},
     journal = {Journal of the European Mathematical Society},
     pages = {489--520},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     doi = {10.4171/jems/309},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/309/}
}
TY  - JOUR
AU  - Zur Izhakian
AU  - Eugenii Shustin
TI  - Idempotent semigroups and tropical algebraic sets
JO  - Journal of the European Mathematical Society
PY  - 2012
SP  - 489
EP  - 520
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/309/
DO  - 10.4171/jems/309
ID  - JEMS_2012_14_2_a5
ER  - 
%0 Journal Article
%A Zur Izhakian
%A Eugenii Shustin
%T Idempotent semigroups and tropical algebraic sets
%J Journal of the European Mathematical Society
%D 2012
%P 489-520
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/309/
%R 10.4171/jems/309
%F JEMS_2012_14_2_a5
Zur Izhakian; Eugenii Shustin. Idempotent semigroups and tropical algebraic sets. Journal of the European Mathematical Society, Tome 14 (2012) no. 2, pp. 489-520. doi : 10.4171/jems/309. http://geodesic.mathdoc.fr/articles/10.4171/jems/309/

Cité par Sources :