Attractors with vanishing rotation number
Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1569-1590
Cet article a éte moissonné depuis la source EMS Press
Given an orientation-preserving homeomorphism of the plane, a rotation number can be associated with each locally attracting fixed point. Assuming that the homeomorphism is dissipative and the rotation number vanishes we prove the existence of a second fixed point. The main tools in the proof are Carathéodory prime ends and fixed point index. The result is applicable to some concrete problems in the theory of periodic differential equations.
Classification :
37-XX, 34-XX, 00-XX
Keywords: Planar attractor, prime end, fixed point index, global asymptotic stability, invariant ray, periodic differential equation, extinction
Keywords: Planar attractor, prime end, fixed point index, global asymptotic stability, invariant ray, periodic differential equation, extinction
@article{JEMS_2011_13_6_a1,
author = {Rafael Ortega and Francisco R. Ruiz del Portal},
title = {Attractors with vanishing rotation number},
journal = {Journal of the European Mathematical Society},
pages = {1569--1590},
year = {2011},
volume = {13},
number = {6},
doi = {10.4171/jems/288},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/288/}
}
TY - JOUR AU - Rafael Ortega AU - Francisco R. Ruiz del Portal TI - Attractors with vanishing rotation number JO - Journal of the European Mathematical Society PY - 2011 SP - 1569 EP - 1590 VL - 13 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/288/ DO - 10.4171/jems/288 ID - JEMS_2011_13_6_a1 ER -
Rafael Ortega; Francisco R. Ruiz del Portal. Attractors with vanishing rotation number. Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1569-1590. doi: 10.4171/jems/288
Cité par Sources :