Attractors with vanishing rotation number
Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1569-1590.

Voir la notice de l'article provenant de la source EMS Press

Given an orientation-preserving homeomorphism of the plane, a rotation number can be associated with each locally attracting fixed point. Assuming that the homeomorphism is dissipative and the rotation number vanishes we prove the existence of a second fixed point. The main tools in the proof are Carathéodory prime ends and fixed point index. The result is applicable to some concrete problems in the theory of periodic differential equations.
DOI : 10.4171/jems/288
Classification : 37-XX, 34-XX, 00-XX
Keywords: Planar attractor, prime end, fixed point index, global asymptotic stability, invariant ray, periodic differential equation, extinction
@article{JEMS_2011_13_6_a1,
     author = {Rafael Ortega and Francisco R. Ruiz del Portal},
     title = {Attractors with vanishing rotation number},
     journal = {Journal of the European Mathematical Society},
     pages = {1569--1590},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2011},
     doi = {10.4171/jems/288},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/288/}
}
TY  - JOUR
AU  - Rafael Ortega
AU  - Francisco R. Ruiz del Portal
TI  - Attractors with vanishing rotation number
JO  - Journal of the European Mathematical Society
PY  - 2011
SP  - 1569
EP  - 1590
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/288/
DO  - 10.4171/jems/288
ID  - JEMS_2011_13_6_a1
ER  - 
%0 Journal Article
%A Rafael Ortega
%A Francisco R. Ruiz del Portal
%T Attractors with vanishing rotation number
%J Journal of the European Mathematical Society
%D 2011
%P 1569-1590
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/288/
%R 10.4171/jems/288
%F JEMS_2011_13_6_a1
Rafael Ortega; Francisco R. Ruiz del Portal. Attractors with vanishing rotation number. Journal of the European Mathematical Society, Tome 13 (2011) no. 6, pp. 1569-1590. doi : 10.4171/jems/288. http://geodesic.mathdoc.fr/articles/10.4171/jems/288/

Cité par Sources :