Chow groups of K3 surfaces and spherical objects
Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1533-1551.

Voir la notice de l'article provenant de la source EMS Press

We show that for a K3 surface X the finitely generated subring R(X)⊂CH∗(X) introduced by Beauville and Voisin is preserved under derived equivalences. This is proved by analyzing Chern characters of spherical bundles (and complexes). As for a K3 surface X defined over a number field all spherical bundles on the complex K3 surface XC​ are defined over Qˉ​, this is compatible with the Bloch–Beilinson conjecture. Besides the work of Beauville and Voisin [5], Lazarfeld’s result on Brill–Noether theory for curves in K3 surfaces [15] and the deformation theory developed in [12] are central for the discussion.
DOI : 10.4171/jems/240
Classification : 14-XX, 00-XX
@article{JEMS_2010_12_6_a8,
     author = {Daniel Huybrechts},
     title = {Chow groups of {K3} surfaces and spherical objects},
     journal = {Journal of the European Mathematical Society},
     pages = {1533--1551},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2010},
     doi = {10.4171/jems/240},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/240/}
}
TY  - JOUR
AU  - Daniel Huybrechts
TI  - Chow groups of K3 surfaces and spherical objects
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 1533
EP  - 1551
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/240/
DO  - 10.4171/jems/240
ID  - JEMS_2010_12_6_a8
ER  - 
%0 Journal Article
%A Daniel Huybrechts
%T Chow groups of K3 surfaces and spherical objects
%J Journal of the European Mathematical Society
%D 2010
%P 1533-1551
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/240/
%R 10.4171/jems/240
%F JEMS_2010_12_6_a8
Daniel Huybrechts. Chow groups of K3 surfaces and spherical objects. Journal of the European Mathematical Society, Tome 12 (2010) no. 6, pp. 1533-1551. doi : 10.4171/jems/240. http://geodesic.mathdoc.fr/articles/10.4171/jems/240/

Cité par Sources :