Descriptive Kakutani equivalence
Journal of the European Mathematical Society, Tome 12 (2010) no. 1, pp. 179-219.

Voir la notice de l'article provenant de la source EMS Press

We consider a descriptive set-theoretic analog of Kakutani equivalence for Borel automorphisms of Polish spaces. Answering a question of Nadkarni, we show that up to this notion, there are exactly two aperiodic Borel automorphisms of uncountable Polish spaces. Using this, we classify all Borel R-flows up to C∞-time-change isomorphism. We then extend the notion of descriptive Kakutani equivalence to all (not necessarily injective) Borel functions, and provide a variety of results leading towards a complete classification. The main technical tools are a series of Glimm–Effros and Dougherty–Jackson–Kechris-style embedding theorems.
DOI : 10.4171/jems/194
Classification : 03-XX, 00-XX
Keywords: Borel functions, Borel ℝ-flows, Kakutani equivalence
@article{JEMS_2010_12_1_a7,
     author = {Benjamin D. Miller and Christian Rosendal},
     title = {Descriptive {Kakutani} equivalence},
     journal = {Journal of the European Mathematical Society},
     pages = {179--219},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2010},
     doi = {10.4171/jems/194},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/194/}
}
TY  - JOUR
AU  - Benjamin D. Miller
AU  - Christian Rosendal
TI  - Descriptive Kakutani equivalence
JO  - Journal of the European Mathematical Society
PY  - 2010
SP  - 179
EP  - 219
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/194/
DO  - 10.4171/jems/194
ID  - JEMS_2010_12_1_a7
ER  - 
%0 Journal Article
%A Benjamin D. Miller
%A Christian Rosendal
%T Descriptive Kakutani equivalence
%J Journal of the European Mathematical Society
%D 2010
%P 179-219
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/194/
%R 10.4171/jems/194
%F JEMS_2010_12_1_a7
Benjamin D. Miller; Christian Rosendal. Descriptive Kakutani equivalence. Journal of the European Mathematical Society, Tome 12 (2010) no. 1, pp. 179-219. doi : 10.4171/jems/194. http://geodesic.mathdoc.fr/articles/10.4171/jems/194/

Cité par Sources :