Resonant normal form for even periodic FPU chains
Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1025-1056.

Voir la notice de l'article provenant de la source EMS Press

We investigate periodic FPU chains with an even number of particles. We show that near the equilibrium point, any such chain admits a resonant Birkhoff normal form of order four which is completely integrable—an important fact which helps explain the numerical experiments of Fermi, Pasta, and Ulam. We analyze the moment map of the integrable approximation of an even FPU chain. Unlike the case of odd FPU chains these integrable systems (generically) exhibit hyperbolic dynamics. As an application we prove that any FPU chain with Dirichlet boundary conditions admits a Birkhoff normal form up to order four and show that a KAM theorem applies.
DOI : 10.4171/jems/174
Classification : 35-XX, 00-XX
@article{JEMS_2009_11_5_a3,
     author = {Andreas Henrici and Thomas Kappeler},
     title = {Resonant normal form for even periodic {FPU} chains},
     journal = {Journal of the European Mathematical Society},
     pages = {1025--1056},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2009},
     doi = {10.4171/jems/174},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/174/}
}
TY  - JOUR
AU  - Andreas Henrici
AU  - Thomas Kappeler
TI  - Resonant normal form for even periodic FPU chains
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 1025
EP  - 1056
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/174/
DO  - 10.4171/jems/174
ID  - JEMS_2009_11_5_a3
ER  - 
%0 Journal Article
%A Andreas Henrici
%A Thomas Kappeler
%T Resonant normal form for even periodic FPU chains
%J Journal of the European Mathematical Society
%D 2009
%P 1025-1056
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/174/
%R 10.4171/jems/174
%F JEMS_2009_11_5_a3
Andreas Henrici; Thomas Kappeler. Resonant normal form for even periodic FPU chains. Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1025-1056. doi : 10.4171/jems/174. http://geodesic.mathdoc.fr/articles/10.4171/jems/174/

Cité par Sources :