Resonant normal form for even periodic FPU chains
Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1025-1056
Cet article a éte moissonné depuis la source EMS Press
We investigate periodic FPU chains with an even number of particles. We show that near the equilibrium point, any such chain admits a resonant Birkhoff normal form of order four which is completely integrable—an important fact which helps explain the numerical experiments of Fermi, Pasta, and Ulam. We analyze the moment map of the integrable approximation of an even FPU chain. Unlike the case of odd FPU chains these integrable systems (generically) exhibit hyperbolic dynamics. As an application we prove that any FPU chain with Dirichlet boundary conditions admits a Birkhoff normal form up to order four and show that a KAM theorem applies.
@article{JEMS_2009_11_5_a3,
author = {Andreas Henrici and Thomas Kappeler},
title = {Resonant normal form for even periodic {FPU} chains},
journal = {Journal of the European Mathematical Society},
pages = {1025--1056},
year = {2009},
volume = {11},
number = {5},
doi = {10.4171/jems/174},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/174/}
}
TY - JOUR AU - Andreas Henrici AU - Thomas Kappeler TI - Resonant normal form for even periodic FPU chains JO - Journal of the European Mathematical Society PY - 2009 SP - 1025 EP - 1056 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/174/ DO - 10.4171/jems/174 ID - JEMS_2009_11_5_a3 ER -
Andreas Henrici; Thomas Kappeler. Resonant normal form for even periodic FPU chains. Journal of the European Mathematical Society, Tome 11 (2009) no. 5, pp. 1025-1056. doi: 10.4171/jems/174
Cité par Sources :