Existence of rational points on smooth projective varieties
Journal of the European Mathematical Society, Tome 11 (2009) no. 3, pp. 529-543.

Voir la notice de l'article provenant de la source EMS Press

Fix a number field k. We prove that if there is an algorithm for deciding whether a smooth projective geometrically integral k-variety has a k-point, then there is an algorithm for deciding whether an arbitrary k-variety has a k-point and also an algorithm for computing X(k) for any k-variety X for which X(k) is finite. The proof involves the construction of a one-parameter algebraic family of Châtelet surfaces such that exactly one of the surfaces fails to have a k-point.
DOI : 10.4171/jems/159
Classification : 14-XX, 11-XX, 00-XX
Keywords: Brauer–Manin obstruction, Hasse principle, Châtelet surface, conic bundle, rational points
@article{JEMS_2009_11_3_a3,
     author = {Bjorn Poonen},
     title = {Existence of rational points on smooth projective varieties},
     journal = {Journal of the European Mathematical Society},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2009},
     doi = {10.4171/jems/159},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/159/}
}
TY  - JOUR
AU  - Bjorn Poonen
TI  - Existence of rational points on smooth projective varieties
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 529
EP  - 543
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/159/
DO  - 10.4171/jems/159
ID  - JEMS_2009_11_3_a3
ER  - 
%0 Journal Article
%A Bjorn Poonen
%T Existence of rational points on smooth projective varieties
%J Journal of the European Mathematical Society
%D 2009
%P 529-543
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/159/
%R 10.4171/jems/159
%F JEMS_2009_11_3_a3
Bjorn Poonen. Existence of rational points on smooth projective varieties. Journal of the European Mathematical Society, Tome 11 (2009) no. 3, pp. 529-543. doi : 10.4171/jems/159. http://geodesic.mathdoc.fr/articles/10.4171/jems/159/

Cité par Sources :