Which 3-manifold groups are Kähler groups?
Journal of the European Mathematical Society, Tome 11 (2009) no. 3, pp. 521-528
Cet article a éte moissonné depuis la source EMS Press
The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then G must be finite—and thus belongs to the well-known list of finite subgroups of O(4), acting freely on S3.
Classification :
20-XX, 32-XX, 00-XX
Keywords: Kähler manifold, 3-manifold, fundamental group, cohomology ring, resonance variety, isotropic subspace
Keywords: Kähler manifold, 3-manifold, fundamental group, cohomology ring, resonance variety, isotropic subspace
@article{JEMS_2009_11_3_a2,
author = {Alexandru Dimca and Alexander I. Suciu},
title = {Which 3-manifold groups are {K\"ahler} groups?},
journal = {Journal of the European Mathematical Society},
pages = {521--528},
year = {2009},
volume = {11},
number = {3},
doi = {10.4171/jems/158},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/158/}
}
TY - JOUR AU - Alexandru Dimca AU - Alexander I. Suciu TI - Which 3-manifold groups are Kähler groups? JO - Journal of the European Mathematical Society PY - 2009 SP - 521 EP - 528 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/158/ DO - 10.4171/jems/158 ID - JEMS_2009_11_3_a2 ER -
Alexandru Dimca; Alexander I. Suciu. Which 3-manifold groups are Kähler groups?. Journal of the European Mathematical Society, Tome 11 (2009) no. 3, pp. 521-528. doi: 10.4171/jems/158
Cité par Sources :