Which 3-manifold groups are Kähler groups?
Journal of the European Mathematical Society, Tome 11 (2009) no. 3, pp. 521-528.

Voir la notice de l'article provenant de la source EMS Press

The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then G must be finite—and thus belongs to the well-known list of finite subgroups of O(4), acting freely on S3.
DOI : 10.4171/jems/158
Classification : 20-XX, 32-XX, 00-XX
Keywords: Kähler manifold, 3-manifold, fundamental group, cohomology ring, resonance variety, isotropic subspace
@article{JEMS_2009_11_3_a2,
     author = {Alexandru Dimca and Alexander I. Suciu},
     title = {Which 3-manifold groups are {K\"ahler} groups?},
     journal = {Journal of the European Mathematical Society},
     pages = {521--528},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2009},
     doi = {10.4171/jems/158},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/158/}
}
TY  - JOUR
AU  - Alexandru Dimca
AU  - Alexander I. Suciu
TI  - Which 3-manifold groups are Kähler groups?
JO  - Journal of the European Mathematical Society
PY  - 2009
SP  - 521
EP  - 528
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/158/
DO  - 10.4171/jems/158
ID  - JEMS_2009_11_3_a2
ER  - 
%0 Journal Article
%A Alexandru Dimca
%A Alexander I. Suciu
%T Which 3-manifold groups are Kähler groups?
%J Journal of the European Mathematical Society
%D 2009
%P 521-528
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/158/
%R 10.4171/jems/158
%F JEMS_2009_11_3_a2
Alexandru Dimca; Alexander I. Suciu. Which 3-manifold groups are Kähler groups?. Journal of the European Mathematical Society, Tome 11 (2009) no. 3, pp. 521-528. doi : 10.4171/jems/158. http://geodesic.mathdoc.fr/articles/10.4171/jems/158/

Cité par Sources :