The regular inverse Galois problem over non-large fields
Journal of the European Mathematical Society, Tome 6 (2004) no. 4, pp. 425-434.

Voir la notice de l'article provenant de la source EMS Press

By a celebrated theorem of Harbater and Pop, the regular inverse Galois problem is solvable over any field containing a large field. Using this and the Mordell conjecture for function fields, we construct the first example of a field K over which the regular inverse Galois problem can be shown to be solvable, but such that K does not contain a large field. The paper is complemented by model-theoretic observations on the diophantine nature of the regular inverse Galois problem.
DOI : 10.4171/jems/15
Classification : 12-XX, 00-XX
Keywords: Inverse Galois problem, embedding problems, large fields, Mordell conjecture for function fields, diophantine theory of fields
@article{JEMS_2004_6_4_a1,
     author = {Jochen Koenigsmann},
     title = {The regular inverse {Galois} problem over non-large fields},
     journal = {Journal of the European Mathematical Society},
     pages = {425--434},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2004},
     doi = {10.4171/jems/15},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/15/}
}
TY  - JOUR
AU  - Jochen Koenigsmann
TI  - The regular inverse Galois problem over non-large fields
JO  - Journal of the European Mathematical Society
PY  - 2004
SP  - 425
EP  - 434
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/15/
DO  - 10.4171/jems/15
ID  - JEMS_2004_6_4_a1
ER  - 
%0 Journal Article
%A Jochen Koenigsmann
%T The regular inverse Galois problem over non-large fields
%J Journal of the European Mathematical Society
%D 2004
%P 425-434
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/15/
%R 10.4171/jems/15
%F JEMS_2004_6_4_a1
Jochen Koenigsmann. The regular inverse Galois problem over non-large fields. Journal of the European Mathematical Society, Tome 6 (2004) no. 4, pp. 425-434. doi : 10.4171/jems/15. http://geodesic.mathdoc.fr/articles/10.4171/jems/15/

Cité par Sources :