Hardy's uncertainty principle, convexity and Schrödinger evolutions
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 883-907
Cet article a éte moissonné depuis la source EMS Press
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy's version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
@article{JEMS_2008_10_4_a1,
author = {Luis Escauriaza and Carlos E. Kenig and Gustavo Ponce and Luis Vega},
title = {Hardy's uncertainty principle, convexity and {Schr\"odinger} evolutions},
journal = {Journal of the European Mathematical Society},
pages = {883--907},
year = {2008},
volume = {10},
number = {4},
doi = {10.4171/jems/134},
url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/134/}
}
TY - JOUR AU - Luis Escauriaza AU - Carlos E. Kenig AU - Gustavo Ponce AU - Luis Vega TI - Hardy's uncertainty principle, convexity and Schrödinger evolutions JO - Journal of the European Mathematical Society PY - 2008 SP - 883 EP - 907 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/jems/134/ DO - 10.4171/jems/134 ID - JEMS_2008_10_4_a1 ER -
%0 Journal Article %A Luis Escauriaza %A Carlos E. Kenig %A Gustavo Ponce %A Luis Vega %T Hardy's uncertainty principle, convexity and Schrödinger evolutions %J Journal of the European Mathematical Society %D 2008 %P 883-907 %V 10 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/jems/134/ %R 10.4171/jems/134 %F JEMS_2008_10_4_a1
Luis Escauriaza; Carlos E. Kenig; Gustavo Ponce; Luis Vega. Hardy's uncertainty principle, convexity and Schrödinger evolutions. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 883-907. doi: 10.4171/jems/134
Cité par Sources :