Hardy's uncertainty principle, convexity and Schrödinger evolutions
Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 883-907.

Voir la notice de l'article provenant de la source EMS Press

We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy's version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
DOI : 10.4171/jems/134
Classification : 35-XX, 00-XX
Keywords: Schrödinger Evolutions
@article{JEMS_2008_10_4_a1,
     author = {Luis Escauriaza and Carlos E. Kenig and Gustavo Ponce and Luis Vega},
     title = {Hardy's uncertainty principle, convexity and {Schr\"odinger} evolutions},
     journal = {Journal of the European Mathematical Society},
     pages = {883--907},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2008},
     doi = {10.4171/jems/134},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/jems/134/}
}
TY  - JOUR
AU  - Luis Escauriaza
AU  - Carlos E. Kenig
AU  - Gustavo Ponce
AU  - Luis Vega
TI  - Hardy's uncertainty principle, convexity and Schrödinger evolutions
JO  - Journal of the European Mathematical Society
PY  - 2008
SP  - 883
EP  - 907
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/jems/134/
DO  - 10.4171/jems/134
ID  - JEMS_2008_10_4_a1
ER  - 
%0 Journal Article
%A Luis Escauriaza
%A Carlos E. Kenig
%A Gustavo Ponce
%A Luis Vega
%T Hardy's uncertainty principle, convexity and Schrödinger evolutions
%J Journal of the European Mathematical Society
%D 2008
%P 883-907
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/jems/134/
%R 10.4171/jems/134
%F JEMS_2008_10_4_a1
Luis Escauriaza; Carlos E. Kenig; Gustavo Ponce; Luis Vega. Hardy's uncertainty principle, convexity and Schrödinger evolutions. Journal of the European Mathematical Society, Tome 10 (2008) no. 4, pp. 883-907. doi : 10.4171/jems/134. http://geodesic.mathdoc.fr/articles/10.4171/jems/134/

Cité par Sources :