Connecting real and hyperarithmetical analysis
Documenta mathematica, Tome 29 (2024) no. 6, pp. 1469-1498

Voir la notice de l'article provenant de la source EMS Press

Going back to Kreisel in the sixties, hyperarithmetical analysis is a cluster of logical systems just beyond arithmetical comprehension. Only recently natural examples of theorems from the mathematical mainstream were identified that fit this category. In this paper, we provide many examples of theorems of real analysis that sit within the range of hyperarithmetical analysis, namely between the higher-order version of Σ11​-AC0​ and weak-Σ11​-AC0​, working in Kohlenbach’s higher-order framework. Our example theorems are based on the Jordan decomposition theorem, unordered sums, metric spaces, and semi-continuous functions. Along the way, we identify a couple of new systems of hyperarithmetical analysis.
DOI : 10.4171/dm/981
Classification : 03F35, 03B30
Mots-clés : higher-order arithmetic, hyperarithmetical analysis
@article{10_4171_dm_981,
     author = {Sam Sanders},
     title = {Connecting real and hyperarithmetical analysis},
     journal = {Documenta mathematica},
     pages = {1469--1498},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2024},
     doi = {10.4171/dm/981},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/981/}
}
TY  - JOUR
AU  - Sam Sanders
TI  - Connecting real and hyperarithmetical analysis
JO  - Documenta mathematica
PY  - 2024
SP  - 1469
EP  - 1498
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/981/
DO  - 10.4171/dm/981
ID  - 10_4171_dm_981
ER  - 
%0 Journal Article
%A Sam Sanders
%T Connecting real and hyperarithmetical analysis
%J Documenta mathematica
%D 2024
%P 1469-1498
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/981/
%R 10.4171/dm/981
%F 10_4171_dm_981
Sam Sanders. Connecting real and hyperarithmetical analysis. Documenta mathematica, Tome 29 (2024) no. 6, pp. 1469-1498. doi: 10.4171/dm/981

Cité par Sources :