Duality for condensed cohomology of the Weil group of a $p$-adic field
Documenta mathematica, Tome 29 (2024) no. 6, pp. 1381-1434

Voir la notice de l'article provenant de la source EMS Press

We use the theory of Condensed Mathematics to build a condensed cohomology theory for the Weil group of a p-adic field. The cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups.
DOI : 10.4171/dm/977
Classification : 11S25, 11S31, 14F20, 11F85
Mots-clés : cohomology of condensed groups, condensed mathematics, Weil group, Pontryagin duality, local Tate duality
@article{10_4171_dm_977,
     author = {Marco Artusa},
     title = {Duality for condensed cohomology of the {Weil} group of~a~$p$-adic field},
     journal = {Documenta mathematica},
     pages = {1381--1434},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2024},
     doi = {10.4171/dm/977},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/977/}
}
TY  - JOUR
AU  - Marco Artusa
TI  - Duality for condensed cohomology of the Weil group of a $p$-adic field
JO  - Documenta mathematica
PY  - 2024
SP  - 1381
EP  - 1434
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/977/
DO  - 10.4171/dm/977
ID  - 10_4171_dm_977
ER  - 
%0 Journal Article
%A Marco Artusa
%T Duality for condensed cohomology of the Weil group of a $p$-adic field
%J Documenta mathematica
%D 2024
%P 1381-1434
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/977/
%R 10.4171/dm/977
%F 10_4171_dm_977
Marco Artusa. Duality for condensed cohomology of the Weil group of a $p$-adic field. Documenta mathematica, Tome 29 (2024) no. 6, pp. 1381-1434. doi: 10.4171/dm/977

Cité par Sources :