Mod $p$ local-global compatibility for $\operatorname{GSp}_{4}(\mathbb{Q}_{p})$ in the ordinary case
Documenta mathematica, Tome 29 (2024) no. 4, pp. 863-919

Voir la notice de l'article provenant de la source EMS Press

Let F be a totally real field of even degree in which p splits completely. Let rˉ:GF​→GSp4​(Fp​) be a modular Galois representation unramified at all finite places away from p and upper-triangular, maximally nonsplit, and of parallel weight at places dividing p. Fix a place w dividing p. Assuming certain genericity conditions and Taylor–Wiles assumptions, we prove that the GSp4​(Fw​)-action on the corresponding Hecke-isotypic part of the space of mod p automorphic forms on a compact mod center form of GSp4​ with infinite level at w determines rˉ∣GFw​​​.
DOI : 10.4171/dm/960
Classification : 11F80, 11F33
Mots-clés : algebraic automorphic forms, Galois representations
@article{10_4171_dm_960,
     author = {John Enns and Heejong Lee},
     title = {Mod $p$ local-global compatibility for $\operatorname{GSp}_{4}(\mathbb{Q}_{p})$ in the ordinary case},
     journal = {Documenta mathematica},
     pages = {863--919},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2024},
     doi = {10.4171/dm/960},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/960/}
}
TY  - JOUR
AU  - John Enns
AU  - Heejong Lee
TI  - Mod $p$ local-global compatibility for $\operatorname{GSp}_{4}(\mathbb{Q}_{p})$ in the ordinary case
JO  - Documenta mathematica
PY  - 2024
SP  - 863
EP  - 919
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/960/
DO  - 10.4171/dm/960
ID  - 10_4171_dm_960
ER  - 
%0 Journal Article
%A John Enns
%A Heejong Lee
%T Mod $p$ local-global compatibility for $\operatorname{GSp}_{4}(\mathbb{Q}_{p})$ in the ordinary case
%J Documenta mathematica
%D 2024
%P 863-919
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/960/
%R 10.4171/dm/960
%F 10_4171_dm_960
John Enns; Heejong Lee. Mod $p$ local-global compatibility for $\operatorname{GSp}_{4}(\mathbb{Q}_{p})$ in the ordinary case. Documenta mathematica, Tome 29 (2024) no. 4, pp. 863-919. doi: 10.4171/dm/960

Cité par Sources :