On the rank of Leopoldt’s and Gross’s regulator maps
Documenta mathematica, Tome 28 (2023) no. 6, pp. 1441-1471
Voir la notice de l'article provenant de la source EMS Press
We generalize Waldschmidt’s bound for Leopoldt’s defect and prove a similar bound for Gross’s defect for an arbitrary extension of number fields. As an application, we prove new cases of Gross’s finiteness conjecture (also known as the Gross–Kuz’min conjecture) beyond the classical abelian case, and we show that Gross’s p-adic regulator has at least half of the conjectured rank. We also describe and compute non-cyclotomic analogues of Gross’s defect.
Classification :
11R27, 11R23
Mots-clés : Leopoldt conjecture, Gross--Kuz'min conjecture, p-adic transcendence theory, Iwasawa theory
Mots-clés : Leopoldt conjecture, Gross--Kuz'min conjecture, p-adic transcendence theory, Iwasawa theory
@article{10_4171_dm_935,
author = {Alexandre Maksoud},
title = {On the rank of {Leopoldt{\textquoteright}s} and {Gross{\textquoteright}s} regulator maps},
journal = {Documenta mathematica},
pages = {1441--1471},
publisher = {mathdoc},
volume = {28},
number = {6},
year = {2023},
doi = {10.4171/dm/935},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/935/}
}
Alexandre Maksoud. On the rank of Leopoldt’s and Gross’s regulator maps. Documenta mathematica, Tome 28 (2023) no. 6, pp. 1441-1471. doi: 10.4171/dm/935
Cité par Sources :