On the rank of Leopoldt’s and Gross’s regulator maps
Documenta mathematica, Tome 28 (2023) no. 6, pp. 1441-1471

Voir la notice de l'article provenant de la source EMS Press

We generalize Waldschmidt’s bound for Leopoldt’s defect and prove a similar bound for Gross’s defect for an arbitrary extension of number fields. As an application, we prove new cases of Gross’s finiteness conjecture (also known as the Gross–Kuz’min conjecture) beyond the classical abelian case, and we show that Gross’s p-adic regulator has at least half of the conjectured rank. We also describe and compute non-cyclotomic analogues of Gross’s defect.
DOI : 10.4171/dm/935
Classification : 11R27, 11R23
Mots-clés : Leopoldt conjecture, Gross--Kuz'min conjecture, p-adic transcendence theory, Iwasawa theory
@article{10_4171_dm_935,
     author = {Alexandre Maksoud},
     title = {On the rank of {Leopoldt{\textquoteright}s} and {Gross{\textquoteright}s} regulator maps},
     journal = {Documenta mathematica},
     pages = {1441--1471},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2023},
     doi = {10.4171/dm/935},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/935/}
}
TY  - JOUR
AU  - Alexandre Maksoud
TI  - On the rank of Leopoldt’s and Gross’s regulator maps
JO  - Documenta mathematica
PY  - 2023
SP  - 1441
EP  - 1471
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/935/
DO  - 10.4171/dm/935
ID  - 10_4171_dm_935
ER  - 
%0 Journal Article
%A Alexandre Maksoud
%T On the rank of Leopoldt’s and Gross’s regulator maps
%J Documenta mathematica
%D 2023
%P 1441-1471
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/935/
%R 10.4171/dm/935
%F 10_4171_dm_935
Alexandre Maksoud. On the rank of Leopoldt’s and Gross’s regulator maps. Documenta mathematica, Tome 28 (2023) no. 6, pp. 1441-1471. doi: 10.4171/dm/935

Cité par Sources :