Genuine versus naïve symmetric monoidal $G$-categories
Documenta mathematica, Tome 28 (2023) no. 5, pp. 1079-1161
Cet article a éte moissonné depuis la source EMS Press
We prove that through the eyes of equivariant weak equivalences the genuine symmetric monoidal G-categories of Guillou and May [Algebr. Geom. Topol. 17 (2017), no. 6, 3259–3339] are equivalent to just ordinary symmetric monoidal categories with G-action. Along the way, we give an operadic model of global infinite loop spaces and provide an equivalence between the equivariant category theory of genuine symmetric monoidal G-categories and the G-parsummable categories studied by Schwede [J. Topol. 15 (2022), no. 3, 1325–1454] and the author [New York J. Math. 29 (2023), 635–686].
Classification :
55P91, 55P48, 19D23, 55U35
Mots-clés : Genuine symmetric monoidal G-categories, operads, parsummable categories, equivariant infinite loop spaces, G-global homotopy theory, equivariant algebraic K-theory
Mots-clés : Genuine symmetric monoidal G-categories, operads, parsummable categories, equivariant infinite loop spaces, G-global homotopy theory, equivariant algebraic K-theory
@article{10_4171_dm_933,
author = {Tobias Lenz},
title = {Genuine versus na{\"\i}ve symmetric monoidal $G$-categories},
journal = {Documenta mathematica},
pages = {1079--1161},
year = {2023},
volume = {28},
number = {5},
doi = {10.4171/dm/933},
url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/933/}
}
Tobias Lenz. Genuine versus naïve symmetric monoidal $G$-categories. Documenta mathematica, Tome 28 (2023) no. 5, pp. 1079-1161. doi: 10.4171/dm/933
Cité par Sources :