Genuine versus naïve symmetric monoidal $G$-categories
Documenta mathematica, Tome 28 (2023) no. 5, pp. 1079-1161

Voir la notice de l'article provenant de la source EMS Press

We prove that through the eyes of equivariant weak equivalences the genuine symmetric monoidal G-categories of Guillou and May [Algebr. Geom. Topol. 17 (2017), no. 6, 3259–3339] are equivalent to just ordinary symmetric monoidal categories with G-action. Along the way, we give an operadic model of global infinite loop spaces and provide an equivalence between the equivariant category theory of genuine symmetric monoidal G-categories and the G-parsummable categories studied by Schwede [J. Topol. 15 (2022), no. 3, 1325–1454] and the author [New York J. Math. 29 (2023), 635–686].
DOI : 10.4171/dm/933
Classification : 55P91, 55P48, 19D23, 55U35
Mots-clés : Genuine symmetric monoidal G-categories, operads, parsummable categories, equivariant infinite loop spaces, G-global homotopy theory, equivariant algebraic K-theory
@article{10_4171_dm_933,
     author = {Tobias Lenz},
     title = {Genuine versus na{\"\i}ve symmetric monoidal $G$-categories},
     journal = {Documenta mathematica},
     pages = {1079--1161},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2023},
     doi = {10.4171/dm/933},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/933/}
}
TY  - JOUR
AU  - Tobias Lenz
TI  - Genuine versus naïve symmetric monoidal $G$-categories
JO  - Documenta mathematica
PY  - 2023
SP  - 1079
EP  - 1161
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/933/
DO  - 10.4171/dm/933
ID  - 10_4171_dm_933
ER  - 
%0 Journal Article
%A Tobias Lenz
%T Genuine versus naïve symmetric monoidal $G$-categories
%J Documenta mathematica
%D 2023
%P 1079-1161
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/933/
%R 10.4171/dm/933
%F 10_4171_dm_933
Tobias Lenz. Genuine versus naïve symmetric monoidal $G$-categories. Documenta mathematica, Tome 28 (2023) no. 5, pp. 1079-1161. doi: 10.4171/dm/933

Cité par Sources :