Cones of traces arising from AF $C^{*}$-algebras
Documenta mathematica, Tome 28 (2023) no. 6, pp. 1279-1321

Voir la notice de l'article provenant de la source EMS Press

We characterize the topological non-cancellative cones that can be expressed as projective limits of finite powers of [0,∞]. For metrizable cones, these are also the cones of lower semicontinuous extended-valued traces on approximately finite-dimensional (AF) C∗-algebras. Our main result may be regarded as a generalization of the fact that any Choquet simplex is a projective limit of finite-dimensional simplices. To obtain our main result, we first establish a duality between certain non-cancellative topological cones and Cuntz semigroups with real multiplication. This duality extends the duality between compact convex sets and complete order unit vector spaces to a non-cancellative setting.
DOI : 10.4171/dm/927
Classification : 06F30, 06B30, 46A55, 46L05
Mots-clés : non-cancellative cones, projective limit, AF C∗-algebras
@article{10_4171_dm_927,
     author = {Mark Moodie and Leonel Robert},
     title = {Cones of traces arising from {AF} $C^{*}$-algebras},
     journal = {Documenta mathematica},
     pages = {1279--1321},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2023},
     doi = {10.4171/dm/927},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/dm/927/}
}
TY  - JOUR
AU  - Mark Moodie
AU  - Leonel Robert
TI  - Cones of traces arising from AF $C^{*}$-algebras
JO  - Documenta mathematica
PY  - 2023
SP  - 1279
EP  - 1321
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4171/dm/927/
DO  - 10.4171/dm/927
ID  - 10_4171_dm_927
ER  - 
%0 Journal Article
%A Mark Moodie
%A Leonel Robert
%T Cones of traces arising from AF $C^{*}$-algebras
%J Documenta mathematica
%D 2023
%P 1279-1321
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4171/dm/927/
%R 10.4171/dm/927
%F 10_4171_dm_927
Mark Moodie; Leonel Robert. Cones of traces arising from AF $C^{*}$-algebras. Documenta mathematica, Tome 28 (2023) no. 6, pp. 1279-1321. doi: 10.4171/dm/927

Cité par Sources :