Decompositions of amplituhedra
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 3, pp. 303-363.

Voir la notice de l'article provenant de la source Numdam

Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The (tree) amplituhedron 𝒜 n,k,m is the image in the Grassmannian Gr k,k+m of the totally nonnegative Grassmannian Gr k,n 0 , under a (map induced by a) linear map which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for the computation of scattering amplitudes in planar 𝒩=4 supersymmetric Yang–Mills theory. In the case relevant to physics (m=4), there is a collection of recursively-defined 4k-dimensional BCFW cells in Gr k,n 0 , whose images conjecturally "triangulate" the amplituhedron – that is, their images are disjoint and cover a dense subset of 𝒜 n,k,4 . In this paper, we approach this problem by first giving an explicit (as opposed to recursive) description of the BCFW cells. We then develop sign-variational tools which we use to prove that when k=2, the images of these cells are disjoint in 𝒜 n,k,4 . We also conjecture that for arbitrary even m, there is a decomposition of the amplituhedron 𝒜 n,k,m involving precisely Mk , n - k - m , m 2 top-dimensional cells (of dimension km), where M(a,b,c) is the number of plane partitions contained in an a×b×c box. This agrees with the fact that when m=4, the number of BCFW cells is the Narayana number N n-3,k+1 =1 n-3n-3 k+1n-3 k.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/87
Classification : 05-XX, 14-XX, 15-XX, 81-XX
Keywords: Amplituhedron, scattering amplitude, totally nonnegative Grassmannian, BCFW recursion, Narayana number, plane partition
@article{AIHPD_2020__7_3_303_0,
     author = {Karp, Steven N. and Williams, Lauren K. and Zhang, Yan X},
     title = {Decompositions of amplituhedra},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {303--363},
     volume = {7},
     number = {3},
     year = {2020},
     doi = {10.4171/aihpd/87},
     mrnumber = {4152617},
     zbl = {1470.81048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/87/}
}
TY  - JOUR
AU  - Karp, Steven N.
AU  - Williams, Lauren K.
AU  - Zhang, Yan X
TI  - Decompositions of amplituhedra
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 303
EP  - 363
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/87/
DO  - 10.4171/aihpd/87
LA  - en
ID  - AIHPD_2020__7_3_303_0
ER  - 
%0 Journal Article
%A Karp, Steven N.
%A Williams, Lauren K.
%A Zhang, Yan X
%T Decompositions of amplituhedra
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 303-363
%V 7
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/87/
%R 10.4171/aihpd/87
%G en
%F AIHPD_2020__7_3_303_0
Karp, Steven N.; Williams, Lauren K.; Zhang, Yan X. Decompositions of amplituhedra. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 3, pp. 303-363. doi : 10.4171/aihpd/87. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/87/

Cité par Sources :