Soliton cellular automata associated with infinite reduced words
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 2, pp. 249-302.

Voir la notice de l'article provenant de la source Numdam

Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider a family of cellular automata Φ(n,k) associated with infinite reduced elements on the affine symmetric group S ^ n , which is a tropicalization of the rational maps introduced in [3]. We study the soliton solutions for Φ(n,k) and explore a duality with the 𝔰𝔩 n -box-ball system.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/86
Classification : 14-XX, 00-XX
Keywords: Tropical solitons, affine symmetric group, box-ball system
@article{AIHPD_2020__7_2_249_0,
     author = {Glick, Max and Inoue, Rei and Pylyavskyy, Pavlo},
     title = {Soliton cellular automata associated with infinite reduced words},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {249--302},
     volume = {7},
     number = {2},
     year = {2020},
     doi = {10.4171/aihpd/86},
     mrnumber = {4109835},
     zbl = {1451.14112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/86/}
}
TY  - JOUR
AU  - Glick, Max
AU  - Inoue, Rei
AU  - Pylyavskyy, Pavlo
TI  - Soliton cellular automata associated with infinite reduced words
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 249
EP  - 302
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/86/
DO  - 10.4171/aihpd/86
LA  - en
ID  - AIHPD_2020__7_2_249_0
ER  - 
%0 Journal Article
%A Glick, Max
%A Inoue, Rei
%A Pylyavskyy, Pavlo
%T Soliton cellular automata associated with infinite reduced words
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 249-302
%V 7
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/86/
%R 10.4171/aihpd/86
%G en
%F AIHPD_2020__7_2_249_0
Glick, Max; Inoue, Rei; Pylyavskyy, Pavlo. Soliton cellular automata associated with infinite reduced words. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 2, pp. 249-302. doi : 10.4171/aihpd/86. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/86/

Cité par Sources :