Voir la notice de l'article provenant de la source Numdam
Applying the quantum group method developed in [50], we construct solutions to the Benoit & Saint-Aubin partial differential equations with boundary conditions given by specific recursive asymptotics properties. Our results generalize solutions constructed in [49, 55], known as the pure partition functions of multiple Schramm–Loewner evolutions. The generalization is reminiscent of fusion in conformal field theory, and our solutions can be thought of as partition functions of systems of random curves, where many curves may emerge from the same point.
@article{AIHPD_2020__7_1_1_0, author = {Peltola, Eveliina}, title = {Basis for solutions of the {Benoit} & {Saint-Aubin} {PDEs} with particular asymptotics properties}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {1--73}, volume = {7}, number = {1}, year = {2020}, doi = {10.4171/aihpd/81}, zbl = {1437.81082}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/81/} }
TY - JOUR AU - Peltola, Eveliina TI - Basis for solutions of the Benoit & Saint-Aubin PDEs with particular asymptotics properties JO - Annales de l’Institut Henri Poincaré D PY - 2020 SP - 1 EP - 73 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/81/ DO - 10.4171/aihpd/81 LA - en ID - AIHPD_2020__7_1_1_0 ER -
%0 Journal Article %A Peltola, Eveliina %T Basis for solutions of the Benoit & Saint-Aubin PDEs with particular asymptotics properties %J Annales de l’Institut Henri Poincaré D %D 2020 %P 1-73 %V 7 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/81/ %R 10.4171/aihpd/81 %G en %F AIHPD_2020__7_1_1_0
Peltola, Eveliina. Basis for solutions of the Benoit & Saint-Aubin PDEs with particular asymptotics properties. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 1, pp. 1-73. doi : 10.4171/aihpd/81. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/81/
Cité par Sources :