Voir la notice de l'article provenant de la source Numdam
We study the application of formal diffeomorphisms to scalar fields. We give a new proof that interacting tree amplitudes vanish in the resulting theories. Our proof is directly at the diagrammatic level, not appealing to the path integral, and proceeds via a generating function analysis, so it is more insightful than previous proofs. Along the way, we give new combinatorial proofs of some Bell polynomial identities, and we comment on the connection with the combinatorial Legendre transform.
@article{AIHPD_2023__10_4_611_0, author = {Mahmoud, Ali Assem and Yeats, Karen}, title = {Diffeomorphisms of scalar quantum fields via generating functions}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {611--633}, volume = {10}, number = {4}, year = {2023}, doi = {10.4171/aihpd/161}, mrnumber = {4653793}, zbl = {1534.81095}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/161/} }
TY - JOUR AU - Mahmoud, Ali Assem AU - Yeats, Karen TI - Diffeomorphisms of scalar quantum fields via generating functions JO - Annales de l’Institut Henri Poincaré D PY - 2023 SP - 611 EP - 633 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/161/ DO - 10.4171/aihpd/161 LA - en ID - AIHPD_2023__10_4_611_0 ER -
%0 Journal Article %A Mahmoud, Ali Assem %A Yeats, Karen %T Diffeomorphisms of scalar quantum fields via generating functions %J Annales de l’Institut Henri Poincaré D %D 2023 %P 611-633 %V 10 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/161/ %R 10.4171/aihpd/161 %G en %F AIHPD_2023__10_4_611_0
Mahmoud, Ali Assem; Yeats, Karen. Diffeomorphisms of scalar quantum fields via generating functions. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 4, pp. 611-633. doi : 10.4171/aihpd/161. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/161/
Cité par Sources :