Voir la notice de l'article provenant de la source Numdam
Configuration polynomials generalize the classical Kirchhoff polynomial defined by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands. Contact equivalence provides a way to study the associated configuration hypersurface. In the contact equivalence class of any configuration polynomial we identify a polynomial with minimal number of variables; it is a configuration polynomial. This minimal number is bounded by $$, where is the rank of the underlying matroid. We show that the number of equivalence classes is finite exactly up to rank and list explicit normal forms for these classes.
@article{AIHPD_2022__9_4_793_0, author = {Denham, Graham and Pol, Delphine and Schulze, Mathias and Walther, Uli}, title = {Configuration polynomials under contact equivalence}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {793--812}, volume = {9}, number = {4}, year = {2022}, doi = {10.4171/aihpd/154}, mrnumber = {4525145}, zbl = {1507.14077}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/} }
TY - JOUR AU - Denham, Graham AU - Pol, Delphine AU - Schulze, Mathias AU - Walther, Uli TI - Configuration polynomials under contact equivalence JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 793 EP - 812 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/ DO - 10.4171/aihpd/154 LA - en ID - AIHPD_2022__9_4_793_0 ER -
%0 Journal Article %A Denham, Graham %A Pol, Delphine %A Schulze, Mathias %A Walther, Uli %T Configuration polynomials under contact equivalence %J Annales de l’Institut Henri Poincaré D %D 2022 %P 793-812 %V 9 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/ %R 10.4171/aihpd/154 %G en %F AIHPD_2022__9_4_793_0
Denham, Graham; Pol, Delphine; Schulze, Mathias; Walther, Uli. Configuration polynomials under contact equivalence. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812. doi : 10.4171/aihpd/154. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/
Cité par Sources :