Configuration polynomials under contact equivalence
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812.

Voir la notice de l'article provenant de la source Numdam

Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Configuration polynomials generalize the classical Kirchhoff polynomial defined by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands. Contact equivalence provides a way to study the associated configuration hypersurface. In the contact equivalence class of any configuration polynomial we identify a polynomial with minimal number of variables; it is a configuration polynomial. This minimal number is bounded by $$, where r is the rank of the underlying matroid. We show that the number of equivalence classes is finite exactly up to rank 3 and list explicit normal forms for these classes.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/154
Classification : 14-XX, 05-XX, 81-XX
Keywords: configuration, matroid, contact equivalence, Feynman, Kirchhoff, Symanzik
@article{AIHPD_2022__9_4_793_0,
     author = {Denham, Graham and Pol, Delphine and Schulze, Mathias and Walther, Uli},
     title = {Configuration polynomials under contact equivalence},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {793--812},
     volume = {9},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpd/154},
     mrnumber = {4525145},
     zbl = {1507.14077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/}
}
TY  - JOUR
AU  - Denham, Graham
AU  - Pol, Delphine
AU  - Schulze, Mathias
AU  - Walther, Uli
TI  - Configuration polynomials under contact equivalence
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 793
EP  - 812
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/
DO  - 10.4171/aihpd/154
LA  - en
ID  - AIHPD_2022__9_4_793_0
ER  - 
%0 Journal Article
%A Denham, Graham
%A Pol, Delphine
%A Schulze, Mathias
%A Walther, Uli
%T Configuration polynomials under contact equivalence
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 793-812
%V 9
%N 4
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/
%R 10.4171/aihpd/154
%G en
%F AIHPD_2022__9_4_793_0
Denham, Graham; Pol, Delphine; Schulze, Mathias; Walther, Uli. Configuration polynomials under contact equivalence. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812. doi : 10.4171/aihpd/154. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/154/

Cité par Sources :