Voir la notice de l'article provenant de la source Numdam
We give a different presentation of a recent bijection due to Chapuy and Dołęga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonorientable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and this allows us to recover a famous asymptotic enumeration formula found by Gao.
@article{AIHPD_2022__9_4_733_0, author = {Bettinelli, Jeremie}, title = {A bijection for nonorientable general maps}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {733--791}, volume = {9}, number = {4}, year = {2022}, doi = {10.4171/aihpd/153}, mrnumber = {4525144}, zbl = {1509.05028}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/153/} }
Bettinelli, Jeremie. A bijection for nonorientable general maps. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791. doi : 10.4171/aihpd/153. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/153/
Cité par Sources :