A bijection for nonorientable general maps
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791.

Voir la notice de l'article provenant de la source Numdam

Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We give a different presentation of a recent bijection due to Chapuy and Dołęga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonorientable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and this allows us to recover a famous asymptotic enumeration formula found by Gao.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/153
Classification : 05-XX
Keywords: map, graph, bijection, nonorientable surface, triangulation, Brownian surface
@article{AIHPD_2022__9_4_733_0,
     author = {Bettinelli, Jeremie},
     title = {A bijection for nonorientable general maps},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {733--791},
     volume = {9},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpd/153},
     mrnumber = {4525144},
     zbl = {1509.05028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/153/}
}
TY  - JOUR
AU  - Bettinelli, Jeremie
TI  - A bijection for nonorientable general maps
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 733
EP  - 791
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/153/
DO  - 10.4171/aihpd/153
LA  - en
ID  - AIHPD_2022__9_4_733_0
ER  - 
%0 Journal Article
%A Bettinelli, Jeremie
%T A bijection for nonorientable general maps
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 733-791
%V 9
%N 4
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/153/
%R 10.4171/aihpd/153
%G en
%F AIHPD_2022__9_4_733_0
Bettinelli, Jeremie. A bijection for nonorientable general maps. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 733-791. doi : 10.4171/aihpd/153. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/153/

Cité par Sources :