Voir la notice de l'article provenant de la source Numdam
We introduce and study a class of determinantal probability measures generalising the class of discrete determinantal point processes. These measures live on the Grassmannian of a real, complex, or quaternionic inner product space that is split into pairwise orthogonal finite-dimensional subspaces. They are determined by a positive self-adjoint contraction of the inner product space, in a way that is equivariant under the action of the group of isometries that preserve the splitting.
@article{AIHPD_2022__9_4_659_0, author = {Kassel, Adrien and L\'evy, Thierry}, title = {Determinantal probability measures on {Grassmannians}}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {659--732}, volume = {9}, number = {4}, year = {2022}, doi = {10.4171/aihpd/152}, mrnumber = {4525143}, zbl = {1511.60072}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/152/} }
TY - JOUR AU - Kassel, Adrien AU - Lévy, Thierry TI - Determinantal probability measures on Grassmannians JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 659 EP - 732 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/152/ DO - 10.4171/aihpd/152 LA - en ID - AIHPD_2022__9_4_659_0 ER -
Kassel, Adrien; Lévy, Thierry. Determinantal probability measures on Grassmannians. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 659-732. doi : 10.4171/aihpd/152. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/152/
Cité par Sources :