Voir la notice de l'article provenant de la source Numdam
We establish formulae for the moments of the moments of the characteristic polynomials of random orthogonal and symplectic matrices in terms of certain lattice point count problems. This allows us to establish asymptotic formulae when the matrix-size tends to infinity in terms of the volumes of certain regions involving continuous Gelfand–Tsetlin patterns with constraints. The results we find differ from those in the unitary case considered previously.
@article{AIHPD_2022__9_3_567_0, author = {Assiotis, Theodoros and Bailey, Emma and Keating, Jonathan}, title = {On the moments of the moments of the characteristic polynomials of {Haar} distributed symplectic and orthogonal matrices}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {567--604}, volume = {9}, number = {3}, year = {2022}, doi = {10.4171/aihpd/127}, mrnumber = {4526320}, zbl = {1515.15032}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/127/} }
TY - JOUR AU - Assiotis, Theodoros AU - Bailey, Emma AU - Keating, Jonathan TI - On the moments of the moments of the characteristic polynomials of Haar distributed symplectic and orthogonal matrices JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 567 EP - 604 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/127/ DO - 10.4171/aihpd/127 LA - en ID - AIHPD_2022__9_3_567_0 ER -
%0 Journal Article %A Assiotis, Theodoros %A Bailey, Emma %A Keating, Jonathan %T On the moments of the moments of the characteristic polynomials of Haar distributed symplectic and orthogonal matrices %J Annales de l’Institut Henri Poincaré D %D 2022 %P 567-604 %V 9 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/127/ %R 10.4171/aihpd/127 %G en %F AIHPD_2022__9_3_567_0
Assiotis, Theodoros; Bailey, Emma; Keating, Jonathan. On the moments of the moments of the characteristic polynomials of Haar distributed symplectic and orthogonal matrices. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 3, pp. 567-604. doi : 10.4171/aihpd/127. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/127/
Cité par Sources :