Voir la notice de l'article provenant de la source Numdam
We define two generalizations of the totally nonnegative Grassmannian and determine their topology in the case of real projective space.We find the spaces to be PL manifolds with boundary which are homotopy equivalent to another real projective space of smaller dimension. One generalization makes use of sign variation while the other uses boundary measurement. Spaces arising from boundary measurement are shown to admit Cohen–Macaulay triangulations.
@article{AIHPD_2022__9_3_543_0, author = {Machacek, John}, title = {Boundary measurement and sign variation in real projective space}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {543--565}, volume = {9}, number = {3}, year = {2022}, doi = {10.4171/aihpd/125}, mrnumber = {4525140}, zbl = {1510.14035}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/125/} }
TY - JOUR AU - Machacek, John TI - Boundary measurement and sign variation in real projective space JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 543 EP - 565 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/125/ DO - 10.4171/aihpd/125 LA - en ID - AIHPD_2022__9_3_543_0 ER -
Machacek, John. Boundary measurement and sign variation in real projective space. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 3, pp. 543-565. doi : 10.4171/aihpd/125. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/125/
Cité par Sources :