Mixed partition functions and exponentially bounded edge-connection rank
Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 179-200.

Voir la notice de l'article provenant de la source Numdam

Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study graph parameters whose associated edge-connection matrices have exponentially bounded rank growth. Our main result is an explicit construction of a large class of graph parameters with this property that we call mixed partition functions. Mixed partition functions can be seen as a generalization of partition functions of vertex models, as introduced by de la Harpe and Jones, [P. de la Harpe and V. F. R. Jones, Graph invariants related to statistical mechanical models: examples and problems, J. Combin. Theory Ser. B 57 (1993), no. 2, 207–227.] and they are related to invariant theory of orthosymplectic supergroup. We moreover show that evaluations of the characteristic polynomial of a simple graph are examples of mixed partition functions, answering a question of de la Harpe and Jones. (NOTE. Some of the results of this paper were announced in an extended abstract: G. Regts and B. Sevenster, Partition functions from orthogonal and symplectic group invariants, Electron. Notes Discrete Math. 61 (2017), 1011–1017. Unfortunately that reference contains a mistake; we will comment on that below).

Accepté le :
Publié le :
DOI : 10.4171/aihpd/100
Classification : 05-XX, 15-XX
Keywords: Partition function, graph parameter, orthogonal group, symplectic group, orthosymplectic Lie super algebra, circuit partition polynomial, connection matrix
@article{AIHPD_2021__8_2_179_0,
     author = {Regts, Guus and Sevenster, Bart},
     title = {Mixed partition functions and exponentially bounded edge-connection rank},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {179--200},
     volume = {8},
     number = {2},
     year = {2021},
     doi = {10.4171/aihpd/100},
     mrnumber = {4261669},
     zbl = {1465.05068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpd/100/}
}
TY  - JOUR
AU  - Regts, Guus
AU  - Sevenster, Bart
TI  - Mixed partition functions and exponentially bounded edge-connection rank
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2021
SP  - 179
EP  - 200
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpd/100/
DO  - 10.4171/aihpd/100
LA  - en
ID  - AIHPD_2021__8_2_179_0
ER  - 
%0 Journal Article
%A Regts, Guus
%A Sevenster, Bart
%T Mixed partition functions and exponentially bounded edge-connection rank
%J Annales de l’Institut Henri Poincaré D
%D 2021
%P 179-200
%V 8
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpd/100/
%R 10.4171/aihpd/100
%G en
%F AIHPD_2021__8_2_179_0
Regts, Guus; Sevenster, Bart. Mixed partition functions and exponentially bounded edge-connection rank. Annales de l’Institut Henri Poincaré D, Tome 8 (2021) no. 2, pp. 179-200. doi : 10.4171/aihpd/100. http://geodesic.mathdoc.fr/articles/10.4171/aihpd/100/

Cité par Sources :