Convergence of the Hesse–Koszul flow on compact Hessian manifolds
Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 6, pp. 1385-1414

Voir la notice de l'article provenant de la source Numdam

We study the long time behavior of the Hesse–Koszul flow on compact Hessian manifolds. When the first affine Chern class is negative, we prove that the flow converges to the unique Hesse–Einstein metric. We also derive a convergence result for a twisted Hesse–Koszul flow on any compact Hessian manifold. These results give alternative proofs for the existence of the unique Hesse–Einstein metric by Cheng–Yau and Caffarelli–Viaclovsky as well as the real Calabi theorem by Cheng–Yau, Delanoë and Caffarelli–Viaclovsky.

Publié le :
DOI : 10.4171/aihpc/68
Classification : 32-XX
Keywords: Hesse–Einstein metric, Hessian manifolds
@article{AIHPC_2023__40_6_1385_0,
     author = {Puechmorel, St\'ephane and T\^o, Tat Dat},
     title = {Convergence of the {Hesse{\textendash}Koszul} flow on compact {Hessian} manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1385--1414},
     volume = {40},
     number = {6},
     year = {2023},
     doi = {10.4171/aihpc/68},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/68/}
}
TY  - JOUR
AU  - Puechmorel, Stéphane
AU  - Tô, Tat Dat
TI  - Convergence of the Hesse–Koszul flow on compact Hessian manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2023
SP  - 1385
EP  - 1414
VL  - 40
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/68/
DO  - 10.4171/aihpc/68
LA  - en
ID  - AIHPC_2023__40_6_1385_0
ER  - 
%0 Journal Article
%A Puechmorel, Stéphane
%A Tô, Tat Dat
%T Convergence of the Hesse–Koszul flow on compact Hessian manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2023
%P 1385-1414
%V 40
%N 6
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/68/
%R 10.4171/aihpc/68
%G en
%F AIHPC_2023__40_6_1385_0
Puechmorel, Stéphane; Tô, Tat Dat. Convergence of the Hesse–Koszul flow on compact Hessian manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 6, pp. 1385-1414. doi: 10.4171/aihpc/68

Cité par Sources :