Fine properties of solutions to the Cauchy problem for a fast diffusion equation with Caffarelli–Kohn–Nirenberg weights
Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 1-59

Voir la notice de l'article provenant de la source Numdam

We investigate fine global properties of nonnegative, integrable solutions to the Cauchy problem for the fast diffusion equation with weights (WFDE) u t =|x| γ div(|x| -β u m ) posed on (0,+)× d , with d3, in the so-called good fast diffusion range m c <m<1, within the range of parameters γ,β which is optimal for the validity of the so-called Caffarelli–Kohn–Nirenberg inequalities.

It is natural to ask in which sense such solutions behave like the Barenblatt 𝔅 (fundamental solution): for instance, asymptotic convergence, i.e. u(t)-𝔅(t) L p ( d ) t0, is well known for all 1p, while only a few partial results tackle a finer analysis of the tail behaviour. We characterize the maximal set of data 𝒳L + 1 ( d ) that produces solutions which are pointwise trapped between two Barenblatt (global Harnack principle), and uniformly converge in relative error (UREC), i.e. d (u(t))=u(t)/(t)-1 L ( d ) t0. Such a characterization is in terms of an integral condition on u(t=0).

To the best of our knowledge, analogous issues for the linear heat equation, m=1, do not possess such clear answers, but only partial results. Our characterization is also new for the classical, nonweighted FDE. We are able to provide minimal rates of convergence to in different norms. Such rates are almost optimal in the nonweighted case, and become optimal for radial solutions. To complete the panorama, we show that solutions with data in L + 1 ( d )𝒳, preserve the same “fat” spatial tail for all times, hence UREC fails and d (u(t))=, even if u(t)-(t) L 1 ( d ) t0.

Accepté le :
Publié le :
DOI : 10.4171/aihpc/42
Classification : 35K55, 35B40, 35B45, 35K67, 35K65
Mots-clés : Caffarelli–Kohn–Nirenberg weights, global Harnack inequalities, tail behaviour, Fast diffusion equation, asymptotic behaviour
@article{AIHPC_2023__40_1_1_0,
     author = {Bonforte, Matteo and Simonov, Nikita},
     title = {Fine properties of solutions to the {Cauchy} problem for a fast diffusion equation with {Caffarelli{\textendash}Kohn{\textendash}Nirenberg} weights},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--59},
     volume = {40},
     number = {1},
     year = {2023},
     doi = {10.4171/aihpc/42},
     language = {EN},
     url = {http://geodesic.mathdoc.fr/articles/10.4171/aihpc/42/}
}
TY  - JOUR
AU  - Bonforte, Matteo
AU  - Simonov, Nikita
TI  - Fine properties of solutions to the Cauchy problem for a fast diffusion equation with Caffarelli–Kohn–Nirenberg weights
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2023
SP  - 1
EP  - 59
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4171/aihpc/42/
DO  - 10.4171/aihpc/42
LA  - EN
ID  - AIHPC_2023__40_1_1_0
ER  - 
%0 Journal Article
%A Bonforte, Matteo
%A Simonov, Nikita
%T Fine properties of solutions to the Cauchy problem for a fast diffusion equation with Caffarelli–Kohn–Nirenberg weights
%J Annales de l'I.H.P. Analyse non linéaire
%D 2023
%P 1-59
%V 40
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4171/aihpc/42/
%R 10.4171/aihpc/42
%G EN
%F AIHPC_2023__40_1_1_0
Bonforte, Matteo; Simonov, Nikita. Fine properties of solutions to the Cauchy problem for a fast diffusion equation with Caffarelli–Kohn–Nirenberg weights. Annales de l'I.H.P. Analyse non linéaire, Tome 40 (2023) no. 1, pp. 1-59. doi: 10.4171/aihpc/42

Cité par Sources :