On separation of points from additive subgroups of $l_{p}^{n}$ by linear functionals and positive definite functions
Studia Mathematica, Tome 237 (2017) no. 1, pp. 57-69
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a finite-dimensional real normed space, and $K$ a closed additive subgroup of $X$. Let $a\in X\setminus K$ and let $d_X(a,K)$ be the distance from $a$ to $K$. We say that a linear functional $f\in X^*$ separates $a$ from $K$ if $d_\mathbb {R}(f(a),f(K)) \gt 0$. We say that a continuous positive definite function $\varphi :X\to \mathbb {C}$ separates $a$ from $K$ if $\varphi $ is constant on $K$ and $\varphi (a)\not =\varphi (0)$. We consider the following question: how well can $a$ be separated from $K$ by linear functionals and positive definite functions? We introduce certain quantities, denoted by $\mathit {wd}_{X}(a,K)$ and $\mathit {pd}_{X}(a,K)$, which measure the ‘distance’ from $a$ to $K$ with respect to linear functionals and positive definite functions, respectively. Then we define \[ \operatorname {wp}(X) := \sup\frac {\mathit {pd}_{X}(a,K)} {\mathit {wd}_{X}(a,K)}, \ \hskip 1em \operatorname {ps}(X) := \sup\frac {d_X(a,K)} {\mathit {pd}_{X}(a,K)}, \] the suprema taken over all closed subgroups $K\subset X$ and all $a\in X\setminus K$. We give some estimates of $\operatorname {wp}(X)$ and $\operatorname {ps}(X)$, mainly for $X=l_p^n$. In particular we prove that $\operatorname {wp}(l_p^n) \asymp _n n^{\max \{1/2,1/p\}}$ if $1\le p\le \infty $, and $\operatorname {ps}(l_p^n) \asymp _n n^{1/2}$ if $2\le p \lt \infty $. The results may be treated as finite-dimensional analogs of those obtained in Banaszczyk and Stegliński (2008, Sec. 5) for diagonal operators in $l_p$ spaces.
Keywords:
finite dimensional real normed space nbsp closed additive subgroup setminus k distance nbsp say linear functional * separates mathbb say continuous positive definite function varphi mathbb separates varphi constant varphi varphi consider following question separated linear functionals positive definite functions introduce certain quantities denoted mathit mathit which measure distance respect linear functionals positive definite functions respectively define operatorname sup frac mathit mathit hskip operatorname sup frac k mathit suprema taken closed subgroups subset setminus estimates operatorname operatorname mainly n particular prove operatorname asymp max infty operatorname asymp infty results may treated finite dimensional analogs those obtained banaszczyk stegli ski sec nbsp diagonal operators spaces
Affiliations des auteurs :
Wojciech Banaszczyk 1 ; Robert Stegliński 2
@article{10_4064_sm8559_10_2016,
author = {Wojciech Banaszczyk and Robert Stegli\'nski},
title = {On separation of points from additive subgroups of $l_{p}^{n}$ by linear functionals and positive definite functions},
journal = {Studia Mathematica},
pages = {57--69},
publisher = {mathdoc},
volume = {237},
number = {1},
year = {2017},
doi = {10.4064/sm8559-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8559-10-2016/}
}
TY - JOUR
AU - Wojciech Banaszczyk
AU - Robert Stegliński
TI - On separation of points from additive subgroups of $l_{p}^{n}$ by linear functionals and positive definite functions
JO - Studia Mathematica
PY - 2017
SP - 57
EP - 69
VL - 237
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8559-10-2016/
DO - 10.4064/sm8559-10-2016
LA - en
ID - 10_4064_sm8559_10_2016
ER -
%0 Journal Article
%A Wojciech Banaszczyk
%A Robert Stegliński
%T On separation of points from additive subgroups of $l_{p}^{n}$ by linear functionals and positive definite functions
%J Studia Mathematica
%D 2017
%P 57-69
%V 237
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8559-10-2016/
%R 10.4064/sm8559-10-2016
%G en
%F 10_4064_sm8559_10_2016
Wojciech Banaszczyk; Robert Stegliński. On separation of points from additive subgroups of $l_{p}^{n}$ by linear functionals and positive definite functions. Studia Mathematica, Tome 237 (2017) no. 1, pp. 57-69. doi: 10.4064/sm8559-10-2016
Cité par Sources :