1Indian Institute of Science Department of Mathematics Bangalore, 560012, India 2Indian Statistical Institute Statistics and Mathematics Unit 8th Mile, Mysore Road Bangalore, 560059, India
Studia Mathematica, Tome 232 (2016) no. 2, pp. 155-171
We study analytic models of operators of class $C_{\cdot 0}$ with
natural positivity assumptions. In particular, we prove that for an
$m$-hypercontraction $T \in C_{\cdot 0}$ on a Hilbert space $\mathcal H$,
there exist Hilbert spaces $\mathcal E$ and $\mathcal E_*$ and a partially
isometric multiplier $\theta \in \mathcal M(H^2(\mathcal E), A^2_m(\mathcal E_*))$
such that
\[
\mathcal H \cong \mathcal Q_{\theta} = A^2_m(\mathcal E_*) \ominus \theta H^2(\mathcal E)
\quad \mbox{and} \quad T \cong P_{\mathcal Q_{\theta}}
M_z|_{\mathcal Q_{\theta}},
\]
where $A^2_m(\mathcal E_*)$ is the $\mathcal E_*$-valued weighted Bergman space
and $H^2(\mathcal E)$ is the $\mathcal E$-valued Hardy space over the unit disc
$\mathbb{D}$. We then proceed to study analytic models for
doubly commuting $n$-tuples of operators and investigate their
applications to joint shift co-invariant subspaces of reproducing
kernel Hilbert spaces over the polydisc. In particular, we completely
analyze doubly commuting quotient modules of a large class of
reproducing kernel Hilbert modules, in the sense of Arazy and
Engliš, over the unit polydisc $\mathbb{D}^n$.
1
Indian Institute of Science Department of Mathematics Bangalore, 560012, India
2
Indian Statistical Institute Statistics and Mathematics Unit 8th Mile, Mysore Road Bangalore, 560059, India
@article{10_4064_sm8437_2_2016,
author = {Monojit Bhattacharjee and Jaydeb Sarkar},
title = {Operator positivity and analytic models of commuting tuples of operators},
journal = {Studia Mathematica},
pages = {155--171},
year = {2016},
volume = {232},
number = {2},
doi = {10.4064/sm8437-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/}
}
TY - JOUR
AU - Monojit Bhattacharjee
AU - Jaydeb Sarkar
TI - Operator positivity and analytic models of commuting tuples of operators
JO - Studia Mathematica
PY - 2016
SP - 155
EP - 171
VL - 232
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/
DO - 10.4064/sm8437-2-2016
LA - en
ID - 10_4064_sm8437_2_2016
ER -
%0 Journal Article
%A Monojit Bhattacharjee
%A Jaydeb Sarkar
%T Operator positivity and analytic models of commuting tuples of operators
%J Studia Mathematica
%D 2016
%P 155-171
%V 232
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/
%R 10.4064/sm8437-2-2016
%G en
%F 10_4064_sm8437_2_2016
Monojit Bhattacharjee; Jaydeb Sarkar. Operator positivity and analytic models of commuting tuples of operators. Studia Mathematica, Tome 232 (2016) no. 2, pp. 155-171. doi: 10.4064/sm8437-2-2016