Operator positivity and analytic models of commuting tuples of operators
Studia Mathematica, Tome 232 (2016) no. 2, pp. 155-171

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study analytic models of operators of class $C_{\cdot 0}$ with natural positivity assumptions. In particular, we prove that for an $m$-hypercontraction $T \in C_{\cdot 0}$ on a Hilbert space $\mathcal H$, there exist Hilbert spaces $\mathcal E$ and $\mathcal E_*$ and a partially isometric multiplier $\theta \in \mathcal M(H^2(\mathcal E), A^2_m(\mathcal E_*))$ such that \[ \mathcal H \cong \mathcal Q_{\theta} = A^2_m(\mathcal E_*) \ominus \theta H^2(\mathcal E) \quad \mbox{and} \quad T \cong P_{\mathcal Q_{\theta}} M_z|_{\mathcal Q_{\theta}}, \] where $A^2_m(\mathcal E_*)$ is the $\mathcal E_*$-valued weighted Bergman space and $H^2(\mathcal E)$ is the $\mathcal E$-valued Hardy space over the unit disc $\mathbb{D}$. We then proceed to study analytic models for doubly commuting $n$-tuples of operators and investigate their applications to joint shift co-invariant subspaces of reproducing kernel Hilbert spaces over the polydisc. In particular, we completely analyze doubly commuting quotient modules of a large class of reproducing kernel Hilbert modules, in the sense of Arazy and Engliš, over the unit polydisc $\mathbb{D}^n$.
DOI : 10.4064/sm8437-2-2016
Keywords: study analytic models operators class cdot natural positivity assumptions particular prove m hypercontraction cdot hilbert space mathcal there exist hilbert spaces mathcal mathcal * partially isometric multiplier theta mathcal mathcal mathcal * mathcal cong mathcal theta mathcal * ominus theta mathcal quad mbox quad cong mathcal theta mathcal theta where mathcal * mathcal * valued weighted bergman space mathcal mathcal e valued hardy space unit disc mathbb proceed study analytic models doubly commuting n tuples operators investigate their applications joint shift co invariant subspaces reproducing kernel hilbert spaces polydisc particular completely analyze doubly commuting quotient modules large class reproducing kernel hilbert modules sense arazy engli unit polydisc nbsp mathbb

Monojit Bhattacharjee 1 ; Jaydeb Sarkar 2

1 Indian Institute of Science Department of Mathematics Bangalore, 560012, India
2 Indian Statistical Institute Statistics and Mathematics Unit 8th Mile, Mysore Road Bangalore, 560059, India
@article{10_4064_sm8437_2_2016,
     author = {Monojit Bhattacharjee and Jaydeb Sarkar},
     title = {Operator positivity and analytic models of commuting tuples of operators},
     journal = {Studia Mathematica},
     pages = {155--171},
     publisher = {mathdoc},
     volume = {232},
     number = {2},
     year = {2016},
     doi = {10.4064/sm8437-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/}
}
TY  - JOUR
AU  - Monojit Bhattacharjee
AU  - Jaydeb Sarkar
TI  - Operator positivity and analytic models of commuting tuples of operators
JO  - Studia Mathematica
PY  - 2016
SP  - 155
EP  - 171
VL  - 232
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/
DO  - 10.4064/sm8437-2-2016
LA  - en
ID  - 10_4064_sm8437_2_2016
ER  - 
%0 Journal Article
%A Monojit Bhattacharjee
%A Jaydeb Sarkar
%T Operator positivity and analytic models of commuting tuples of operators
%J Studia Mathematica
%D 2016
%P 155-171
%V 232
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/
%R 10.4064/sm8437-2-2016
%G en
%F 10_4064_sm8437_2_2016
Monojit Bhattacharjee; Jaydeb Sarkar. Operator positivity and analytic models of commuting tuples of operators. Studia Mathematica, Tome 232 (2016) no. 2, pp. 155-171. doi: 10.4064/sm8437-2-2016

Cité par Sources :