Operator positivity and analytic models of commuting tuples of operators
Studia Mathematica, Tome 232 (2016) no. 2, pp. 155-171
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study analytic models of operators of class $C_{\cdot 0}$ with
natural positivity assumptions. In particular, we prove that for an
$m$-hypercontraction $T \in C_{\cdot 0}$ on a Hilbert space $\mathcal H$,
there exist Hilbert spaces $\mathcal E$ and $\mathcal E_*$ and a partially
isometric multiplier $\theta \in \mathcal M(H^2(\mathcal E), A^2_m(\mathcal E_*))$
such that
\[
\mathcal H \cong \mathcal Q_{\theta} = A^2_m(\mathcal E_*) \ominus \theta H^2(\mathcal E)
\quad \mbox{and} \quad T \cong P_{\mathcal Q_{\theta}}
M_z|_{\mathcal Q_{\theta}},
\]
where $A^2_m(\mathcal E_*)$ is the $\mathcal E_*$-valued weighted Bergman space
and $H^2(\mathcal E)$ is the $\mathcal E$-valued Hardy space over the unit disc
$\mathbb{D}$. We then proceed to study analytic models for
doubly commuting $n$-tuples of operators and investigate their
applications to joint shift co-invariant subspaces of reproducing
kernel Hilbert spaces over the polydisc. In particular, we completely
analyze doubly commuting quotient modules of a large class of
reproducing kernel Hilbert modules, in the sense of Arazy and
Engliš, over the unit polydisc $\mathbb{D}^n$.
Keywords:
study analytic models operators class cdot natural positivity assumptions particular prove m hypercontraction cdot hilbert space mathcal there exist hilbert spaces mathcal mathcal * partially isometric multiplier theta mathcal mathcal mathcal * mathcal cong mathcal theta mathcal * ominus theta mathcal quad mbox quad cong mathcal theta mathcal theta where mathcal * mathcal * valued weighted bergman space mathcal mathcal e valued hardy space unit disc mathbb proceed study analytic models doubly commuting n tuples operators investigate their applications joint shift co invariant subspaces reproducing kernel hilbert spaces polydisc particular completely analyze doubly commuting quotient modules large class reproducing kernel hilbert modules sense arazy engli unit polydisc nbsp mathbb
Affiliations des auteurs :
Monojit Bhattacharjee 1 ; Jaydeb Sarkar 2
@article{10_4064_sm8437_2_2016,
author = {Monojit Bhattacharjee and Jaydeb Sarkar},
title = {Operator positivity and analytic models of commuting tuples of operators},
journal = {Studia Mathematica},
pages = {155--171},
publisher = {mathdoc},
volume = {232},
number = {2},
year = {2016},
doi = {10.4064/sm8437-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/}
}
TY - JOUR AU - Monojit Bhattacharjee AU - Jaydeb Sarkar TI - Operator positivity and analytic models of commuting tuples of operators JO - Studia Mathematica PY - 2016 SP - 155 EP - 171 VL - 232 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/ DO - 10.4064/sm8437-2-2016 LA - en ID - 10_4064_sm8437_2_2016 ER -
%0 Journal Article %A Monojit Bhattacharjee %A Jaydeb Sarkar %T Operator positivity and analytic models of commuting tuples of operators %J Studia Mathematica %D 2016 %P 155-171 %V 232 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8437-2-2016/ %R 10.4064/sm8437-2-2016 %G en %F 10_4064_sm8437_2_2016
Monojit Bhattacharjee; Jaydeb Sarkar. Operator positivity and analytic models of commuting tuples of operators. Studia Mathematica, Tome 232 (2016) no. 2, pp. 155-171. doi: 10.4064/sm8437-2-2016
Cité par Sources :