A rigidity phenomenon for the Hardy–Littlewood maximal function
Studia Mathematica, Tome 229 (2015) no. 3, pp. 263-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Hardy–Littlewood maximal function $\mathcal {M}$ and the trigonometric function $\sin x$ are two central objects in harmonic analysis. We prove that $\mathcal {M}$ characterizes $\sin x$ in the following way: Let $f \in C^{\alpha }(\mathbb {R}, \mathbb {R})$ be a periodic function and $\alpha > 1/2$. If there exists a real number $0 \gamma \infty $ such that the averaging operator $$ (A_xf)(r) = \frac {1}{2r}\int _{x-r}^{x+r}{f(z)\,dz}$$ has a critical point at $r = \gamma $ for every $x \in \mathbb {R}$, then $$f(x) = a+b\sin (cx + d) \hskip 1em\hbox {for some } a,b,c,d \in \mathbb {R}.$$ This statement can be used to derive a characterization of trigonometric functions as those nonconstant functions for which the computation of the maximal function $\mathcal {M}$ is as simple as possible. The proof uses the Lindemann–Weierstrass theorem from transcendental number theory.
Keywords:
hardy littlewood maximal function mathcal trigonometric function sin central objects harmonic analysis prove mathcal characterizes sin following alpha mathbb mathbb periodic function alpha there exists real number gamma infty averaging operator frac int x r has critical point gamma every mathbb sin hskip hbox d mathbb statement derive characterization trigonometric functions those nonconstant functions which computation maximal function mathcal simple possible proof uses lindemann weierstrass theorem transcendental number theory
Affiliations des auteurs :
Stefan Steinerberger 1
@article{10_4064_sm8368_12_2015,
author = {Stefan Steinerberger},
title = {A rigidity phenomenon for the {Hardy{\textendash}Littlewood} maximal function},
journal = {Studia Mathematica},
pages = {263--278},
publisher = {mathdoc},
volume = {229},
number = {3},
year = {2015},
doi = {10.4064/sm8368-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8368-12-2015/}
}
TY - JOUR AU - Stefan Steinerberger TI - A rigidity phenomenon for the Hardy–Littlewood maximal function JO - Studia Mathematica PY - 2015 SP - 263 EP - 278 VL - 229 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8368-12-2015/ DO - 10.4064/sm8368-12-2015 LA - en ID - 10_4064_sm8368_12_2015 ER -
Stefan Steinerberger. A rigidity phenomenon for the Hardy–Littlewood maximal function. Studia Mathematica, Tome 229 (2015) no. 3, pp. 263-278. doi: 10.4064/sm8368-12-2015
Cité par Sources :