On Erb’s uncertainty principle
Studia Mathematica, Tome 232 (2016) no. 1, pp. 7-17

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We improve a result of Erb, concerning an uncertainty principle for orthogonal polynomials. The proof uses numerical range and a decomposition of some multiplication operators as a difference of orthogonal projections.
DOI : 10.4064/sm8241-3-2016
Keywords: improve result erb concerning uncertainty principle orthogonal polynomials proof uses numerical range decomposition multiplication operators difference orthogonal projections

Hubert Klaja 1

1 Département de Mathématiques et de Statistique Pavillon Alexandre-Vachon 1045, av. de la Médecine Université Laval Québec, Canada G1V 0A6
@article{10_4064_sm8241_3_2016,
     author = {Hubert Klaja},
     title = {On {Erb{\textquoteright}s} uncertainty principle},
     journal = {Studia Mathematica},
     pages = {7--17},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8241-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8241-3-2016/}
}
TY  - JOUR
AU  - Hubert Klaja
TI  - On Erb’s uncertainty principle
JO  - Studia Mathematica
PY  - 2016
SP  - 7
EP  - 17
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8241-3-2016/
DO  - 10.4064/sm8241-3-2016
LA  - en
ID  - 10_4064_sm8241_3_2016
ER  - 
%0 Journal Article
%A Hubert Klaja
%T On Erb’s uncertainty principle
%J Studia Mathematica
%D 2016
%P 7-17
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8241-3-2016/
%R 10.4064/sm8241-3-2016
%G en
%F 10_4064_sm8241_3_2016
Hubert Klaja. On Erb’s uncertainty principle. Studia Mathematica, Tome 232 (2016) no. 1, pp. 7-17. doi: 10.4064/sm8241-3-2016

Cité par Sources :