Orthogonally additive holomorphic maps between C$^{*}$-algebras
Studia Mathematica, Tome 234 (2016) no. 3, pp. 195-216 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $A,B$ be $\rm C^{*}$-algebras, $B_A(0;r)$ the open ball in $A$ centered at $0$ with radius $r \gt 0$, and $H:B_A(0;r)\to B$ an orthogonally additive holomorphic map. If $H$ is zero product preserving on positive elements in $B_A(0;r)$, we show, in the commutative case, i.e., $A=C_0(X)$ and $B=C_0(Y)$, that there exist weight functions $h_n$ and a symbol map $\varphi : Y\to X$ such that $$ H(f)=\sum _{n\geq 1} h_n (f\circ \varphi )^n, \hskip 1em \ \forall f\in B_{C_0(X)}(0;r). $$ In the general case, we show that if $H$ is also conformal then there exist central multipliers $h_n$ of $B$ and a surjective Jordan isomorphism $J: A\to B$ such that $$ H(a) = \sum _{n\geq 1} h_n J(a)^n, \hskip 1em\ \forall a\in B_A(0;r). $$ If, in addition, $H$ is zero product preserving on the whole $B_A(0;r)$, then $J$ is an algebra isomorphism. We also study orthogonally additive $n$-homogeneous polynomials which are $n$-isometries.
DOI : 10.4064/sm7922-6-2016
Keywords: * algebras ball centered radius orthogonally additive holomorphic map zero product preserving positive elements commutative there exist weight functions symbol map varphi sum geq circ varphi hskip forall general conformal there exist central multipliers surjective jordan isomorphism sum geq a hskip forall addition zero product preserving whole algebra isomorphism study orthogonally additive n homogeneous polynomials which n isometries

Qingying Bu 1 ; Ming-Hsiu Hsu 2 ; Ngai-Ching Wong 3

1 Department of Mathematics University of Mississippi University, MS 38677, U.S.A.
2 Department of Mathematics National Central University Chung-Li, 32054, Taiwan
3 Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, 80424, Taiwan
@article{10_4064_sm7922_6_2016,
     author = {Qingying Bu and Ming-Hsiu Hsu and Ngai-Ching Wong},
     title = {Orthogonally additive holomorphic maps between {C}$^{*}$-algebras},
     journal = {Studia Mathematica},
     pages = {195--216},
     year = {2016},
     volume = {234},
     number = {3},
     doi = {10.4064/sm7922-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm7922-6-2016/}
}
TY  - JOUR
AU  - Qingying Bu
AU  - Ming-Hsiu Hsu
AU  - Ngai-Ching Wong
TI  - Orthogonally additive holomorphic maps between C$^{*}$-algebras
JO  - Studia Mathematica
PY  - 2016
SP  - 195
EP  - 216
VL  - 234
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm7922-6-2016/
DO  - 10.4064/sm7922-6-2016
LA  - en
ID  - 10_4064_sm7922_6_2016
ER  - 
%0 Journal Article
%A Qingying Bu
%A Ming-Hsiu Hsu
%A Ngai-Ching Wong
%T Orthogonally additive holomorphic maps between C$^{*}$-algebras
%J Studia Mathematica
%D 2016
%P 195-216
%V 234
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm7922-6-2016/
%R 10.4064/sm7922-6-2016
%G en
%F 10_4064_sm7922_6_2016
Qingying Bu; Ming-Hsiu Hsu; Ngai-Ching Wong. Orthogonally additive holomorphic maps between C$^{*}$-algebras. Studia Mathematica, Tome 234 (2016) no. 3, pp. 195-216. doi: 10.4064/sm7922-6-2016

Cité par Sources :