Operators on the stopping time space
Studia Mathematica, Tome 228 (2015) no. 3, pp. 235-258

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $S^1$ be the stopping time space and $\mathcal {B}_1(S^1)$ be the Baire-1 elements of the second dual of $S^1$. To each element $x^{**}$ in $\mathcal {B}_1(S^1)$ we associate a positive Borel measure $\mu _{x^{**}}$ on the Cantor set. We use the measures $\{\mu _{x^{**}}: x^{**}\in \mathcal {B}_1(S^1) \}$ to characterize the operators $T:X\to S^1$, defined on a space $X$ with an unconditional basis, which preserve a copy of $S^1$. In particular, if $X=S^1$, we show that $T$ preserves a copy of $S^1$ if and only if $\{\mu _{T^{**}(x^{**})}:x^{**}\in \mathcal {B}_1(S^1)\}$ is non-separable as a subset of $\mathcal {M}(2^\mathbb {N})$.
DOI : 10.4064/sm228-3-3
Keywords: stopping time space mathcal baire elements second dual each element ** mathcal associate positive borel measure ** cantor set measures ** ** mathcal characterize operators defined space unconditional basis which preserve copy particular preserves copy only ** ** ** mathcal non separable subset mathcal mathbb

Dimitris Apatsidis 1

1 Faculty of Applied Sciences National Technical University of Athens Department of Mathematics, Zografou Campus 157 80, Athens, Greece
@article{10_4064_sm228_3_3,
     author = {Dimitris Apatsidis},
     title = {Operators on the stopping time space},
     journal = {Studia Mathematica},
     pages = {235--258},
     publisher = {mathdoc},
     volume = {228},
     number = {3},
     year = {2015},
     doi = {10.4064/sm228-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-3/}
}
TY  - JOUR
AU  - Dimitris Apatsidis
TI  - Operators on the stopping time space
JO  - Studia Mathematica
PY  - 2015
SP  - 235
EP  - 258
VL  - 228
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-3/
DO  - 10.4064/sm228-3-3
LA  - en
ID  - 10_4064_sm228_3_3
ER  - 
%0 Journal Article
%A Dimitris Apatsidis
%T Operators on the stopping time space
%J Studia Mathematica
%D 2015
%P 235-258
%V 228
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-3/
%R 10.4064/sm228-3-3
%G en
%F 10_4064_sm228_3_3
Dimitris Apatsidis. Operators on the stopping time space. Studia Mathematica, Tome 228 (2015) no. 3, pp. 235-258. doi: 10.4064/sm228-3-3

Cité par Sources :