Operators on the stopping time space
Studia Mathematica, Tome 228 (2015) no. 3, pp. 235-258
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $S^1$ be the stopping time space and $\mathcal {B}_1(S^1)$ be the Baire-1 elements of the second dual of $S^1$. To each element $x^{**}$ in $\mathcal {B}_1(S^1)$ we associate a positive Borel measure $\mu _{x^{**}}$ on the Cantor set. We use the measures $\{\mu _{x^{**}}: x^{**}\in \mathcal {B}_1(S^1) \}$ to characterize the operators $T:X\to S^1$, defined on a space $X$ with an unconditional basis, which preserve a copy of $S^1$. In particular, if $X=S^1$, we show that $T$ preserves a copy of $S^1$ if and only if $\{\mu _{T^{**}(x^{**})}:x^{**}\in \mathcal {B}_1(S^1)\}$ is non-separable as a subset of $\mathcal {M}(2^\mathbb {N})$.
Keywords:
stopping time space mathcal baire elements second dual each element ** mathcal associate positive borel measure ** cantor set measures ** ** mathcal characterize operators defined space unconditional basis which preserve copy particular preserves copy only ** ** ** mathcal non separable subset mathcal mathbb
Affiliations des auteurs :
Dimitris Apatsidis 1
@article{10_4064_sm228_3_3,
author = {Dimitris Apatsidis},
title = {Operators on the stopping time space},
journal = {Studia Mathematica},
pages = {235--258},
publisher = {mathdoc},
volume = {228},
number = {3},
year = {2015},
doi = {10.4064/sm228-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-3-3/}
}
Dimitris Apatsidis. Operators on the stopping time space. Studia Mathematica, Tome 228 (2015) no. 3, pp. 235-258. doi: 10.4064/sm228-3-3
Cité par Sources :