Estimates for vector-valued holomorphic functions and Littlewood–Paley–Stein theory
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 228 (2015) no. 1, pp. 73-99
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We consider generalized square function norms of holomorphic functions with values in a Banach space. One of the main results is a characterization of embeddings of the form \[ L^p(X)\subseteq \gamma (X) \subseteq L^q(X), \] in terms of the type $p$ and cotype $q$ of the Banach space $X$. As an application we prove $L^p$-estimates for vector-valued Littlewood–Paley–Stein $g$-functions and derive an embedding result for real and complex interpolation spaces under type and cotype conditions.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
consider generalized square function norms holomorphic functions values banach space main results characterization embeddings form subseteq gamma subseteq terms type cotype banach space application prove p estimates vector valued littlewood paley stein g functions derive embedding result real complex interpolation spaces under type cotype conditions
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Mark Veraar 1 ; Lutz Weis 2
@article{10_4064_sm228_1_7,
     author = {Mark Veraar and Lutz Weis},
     title = {Estimates for vector-valued holomorphic functions and {Littlewood{\textendash}Paley{\textendash}Stein} theory},
     journal = {Studia Mathematica},
     pages = {73--99},
     publisher = {mathdoc},
     volume = {228},
     number = {1},
     year = {2015},
     doi = {10.4064/sm228-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-7/}
}
                      
                      
                    TY - JOUR AU - Mark Veraar AU - Lutz Weis TI - Estimates for vector-valued holomorphic functions and Littlewood–Paley–Stein theory JO - Studia Mathematica PY - 2015 SP - 73 EP - 99 VL - 228 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-7/ DO - 10.4064/sm228-1-7 LA - en ID - 10_4064_sm228_1_7 ER -
%0 Journal Article %A Mark Veraar %A Lutz Weis %T Estimates for vector-valued holomorphic functions and Littlewood–Paley–Stein theory %J Studia Mathematica %D 2015 %P 73-99 %V 228 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm228-1-7/ %R 10.4064/sm228-1-7 %G en %F 10_4064_sm228_1_7
Mark Veraar; Lutz Weis. Estimates for vector-valued holomorphic functions and Littlewood–Paley–Stein theory. Studia Mathematica, Tome 228 (2015) no. 1, pp. 73-99. doi: 10.4064/sm228-1-7
Cité par Sources :
