1Pure Mathematics Research Centre Queen's University Belfast Belfast BT7 1NN, United Kingdom 2Department of Mathematical Sciences Chalmers University of Technology and the University of Gothenburg Gothenburg SE-412 96, Sweden
Studia Mathematica, Tome 226 (2015) no. 1, pp. 75-93
We initiate the study of sets of $p$-multiplicity in locally compact groups and their operator versions. We show that a closed subset $E$ of a second countable locally compact group $G$ is a set of $p$-multiplicity if and only if $E^* = \{(s,t) : ts^{-1}\in E\}$ is a set of operator $p$-multiplicity. We exhibit examples of sets of $p$-multiplicity, establish preservation properties for unions and direct products, and prove a $p$-version of the Stone–von Neumann Theorem.
Keywords:
initiate study sets p multiplicity locally compact groups their operator versions closed subset second countable locally compact group set p multiplicity only * set operator p multiplicity exhibit examples sets p multiplicity establish preservation properties unions direct products prove p version stone von neumann theorem
Affiliations des auteurs :
I. G. Todorov 
1
;
L. Turowska 
2
1
Pure Mathematics Research Centre Queen's University Belfast Belfast BT7 1NN, United Kingdom
2
Department of Mathematical Sciences Chalmers University of Technology and the University of Gothenburg Gothenburg SE-412 96, Sweden
@article{10_4064_sm226_1_4,
author = {I. G. Todorov and L. Turowska},
title = {Sets of $p$-multiplicity in locally compact groups},
journal = {Studia Mathematica},
pages = {75--93},
year = {2015},
volume = {226},
number = {1},
doi = {10.4064/sm226-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm226-1-4/}
}
TY - JOUR
AU - I. G. Todorov
AU - L. Turowska
TI - Sets of $p$-multiplicity in locally compact groups
JO - Studia Mathematica
PY - 2015
SP - 75
EP - 93
VL - 226
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm226-1-4/
DO - 10.4064/sm226-1-4
LA - en
ID - 10_4064_sm226_1_4
ER -
%0 Journal Article
%A I. G. Todorov
%A L. Turowska
%T Sets of $p$-multiplicity in locally compact groups
%J Studia Mathematica
%D 2015
%P 75-93
%V 226
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm226-1-4/
%R 10.4064/sm226-1-4
%G en
%F 10_4064_sm226_1_4
I. G. Todorov; L. Turowska. Sets of $p$-multiplicity in locally compact groups. Studia Mathematica, Tome 226 (2015) no. 1, pp. 75-93. doi: 10.4064/sm226-1-4