The Daugavet property and translation-invariant subspaces
Studia Mathematica, Tome 221 (2014) no. 3, pp. 269-291
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be an infinite, compact abelian group and let $\varLambda $ be a subset of its dual group $\varGamma $. We study the question which spaces of the form $C_\varLambda (G)$ or $L^1_\varLambda (G)$ and which quotients of the form $C(G)/C_\varLambda (G)$ or $L^1(G)/L^1_\varLambda (G)$ have the Daugavet property.
We show that $C_\varLambda (G)$ is a rich subspace of $C(G)$ if and only if $\varGamma \setminus \varLambda ^{-1}$ is a semi-Riesz set. If $L^1_\varLambda (G)$ is a rich subspace of $L^1(G)$, then $C_\varLambda (G)$ is a rich subspace of $C(G)$ as well. Concerning quotients, we prove that $C(G)/C_\varLambda (G)$ has the Daugavet property if $\varLambda $ is a Rosenthal set, and that $L^1_\varLambda (G)$ is a poor subspace of $L^1(G)$ if $\varLambda $ is a nicely placed Riesz set.
Keywords:
infinite compact abelian group varlambda subset its dual group vargamma study question which spaces form varlambda varlambda which quotients form varlambda varlambda have daugavet property varlambda rich subspace only vargamma setminus varlambda semi riesz set varlambda rich subspace varlambda rich subspace concerning quotients prove varlambda has daugavet property varlambda rosenthal set varlambda poor subspace varlambda nicely placed riesz set
Affiliations des auteurs :
Simon Lücking 1
@article{10_4064_sm221_3_5,
author = {Simon L\"ucking},
title = {The {Daugavet} property and translation-invariant subspaces},
journal = {Studia Mathematica},
pages = {269--291},
publisher = {mathdoc},
volume = {221},
number = {3},
year = {2014},
doi = {10.4064/sm221-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-3-5/}
}
Simon Lücking. The Daugavet property and translation-invariant subspaces. Studia Mathematica, Tome 221 (2014) no. 3, pp. 269-291. doi: 10.4064/sm221-3-5
Cité par Sources :