Polaroid type operators and compact perturbations
Studia Mathematica, Tome 221 (2014) no. 2, pp. 175-192
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A bounded linear operator $T$ acting on a Hilbert space
is said to be polaroid if each isolated point in the spectrum
is a pole of the resolvent of $T$. There are several generalizations
of the polaroid property.
We investigate compact perturbations
of polaroid type operators. We prove that, given an operator $T$
and $\varepsilon>0$, there exists a compact operator $K$ with
$\|K\|\varepsilon$ such that $T+K$ is polaroid. Moreover,
we characterize those operators for which
a certain polaroid type property is stable under
(small) compact perturbations.
Keywords:
bounded linear operator acting hilbert space said polaroid each isolated point spectrum pole resolvent there several generalizations polaroid property investigate compact perturbations polaroid type operators prove given operator varepsilon there exists compact operator varepsilon polaroid moreover characterize those operators which certain polaroid type property stable under small compact perturbations
Affiliations des auteurs :
Chun Guang Li 1 ; Ting Ting Zhou 2
@article{10_4064_sm221_2_5,
author = {Chun Guang Li and Ting Ting Zhou},
title = {Polaroid type operators and compact perturbations},
journal = {Studia Mathematica},
pages = {175--192},
publisher = {mathdoc},
volume = {221},
number = {2},
year = {2014},
doi = {10.4064/sm221-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-5/}
}
TY - JOUR AU - Chun Guang Li AU - Ting Ting Zhou TI - Polaroid type operators and compact perturbations JO - Studia Mathematica PY - 2014 SP - 175 EP - 192 VL - 221 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-5/ DO - 10.4064/sm221-2-5 LA - en ID - 10_4064_sm221_2_5 ER -
Chun Guang Li; Ting Ting Zhou. Polaroid type operators and compact perturbations. Studia Mathematica, Tome 221 (2014) no. 2, pp. 175-192. doi: 10.4064/sm221-2-5
Cité par Sources :