1School of Mathematics and Statistics Northeast Normal University Changchun 130024, P.R. China 2Institute of Mathematics Jilin University Changchun 130012, P.R. China
Studia Mathematica, Tome 221 (2014) no. 2, pp. 175-192
A bounded linear operator $T$ acting on a Hilbert space
is said to be polaroid if each isolated point in the spectrum
is a pole of the resolvent of $T$. There are several generalizations
of the polaroid property.
We investigate compact perturbations
of polaroid type operators. We prove that, given an operator $T$
and $\varepsilon>0$, there exists a compact operator $K$ with
$\|K\|\varepsilon$ such that $T+K$ is polaroid. Moreover,
we characterize those operators for which
a certain polaroid type property is stable under
(small) compact perturbations.
Keywords:
bounded linear operator acting hilbert space said polaroid each isolated point spectrum pole resolvent there several generalizations polaroid property investigate compact perturbations polaroid type operators prove given operator varepsilon there exists compact operator varepsilon polaroid moreover characterize those operators which certain polaroid type property stable under small compact perturbations
Affiliations des auteurs :
Chun Guang Li 
1
;
Ting Ting Zhou 
2
1
School of Mathematics and Statistics Northeast Normal University Changchun 130024, P.R. China
2
Institute of Mathematics Jilin University Changchun 130012, P.R. China
@article{10_4064_sm221_2_5,
author = {Chun Guang Li and Ting Ting Zhou},
title = {Polaroid type operators and compact perturbations},
journal = {Studia Mathematica},
pages = {175--192},
year = {2014},
volume = {221},
number = {2},
doi = {10.4064/sm221-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-5/}
}
TY - JOUR
AU - Chun Guang Li
AU - Ting Ting Zhou
TI - Polaroid type operators and compact perturbations
JO - Studia Mathematica
PY - 2014
SP - 175
EP - 192
VL - 221
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-5/
DO - 10.4064/sm221-2-5
LA - en
ID - 10_4064_sm221_2_5
ER -
%0 Journal Article
%A Chun Guang Li
%A Ting Ting Zhou
%T Polaroid type operators and compact perturbations
%J Studia Mathematica
%D 2014
%P 175-192
%V 221
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm221-2-5/
%R 10.4064/sm221-2-5
%G en
%F 10_4064_sm221_2_5
Chun Guang Li; Ting Ting Zhou. Polaroid type operators and compact perturbations. Studia Mathematica, Tome 221 (2014) no. 2, pp. 175-192. doi: 10.4064/sm221-2-5