Mixed $A_p$-$A_{\infty} $ estimates with one supremum
Studia Mathematica, Tome 219 (2013) no. 3, pp. 247-267
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish several mixed $A_p$-$A_\infty $ bounds for Calderón–Zygmund operators that only involve one supremum. We address both cases when the $A_\infty $ part of the constant is measured using the exponential-logarithmic definition and using the Fujii–Wilson definition. In particular, we answer a question of the first author and provide an answer, up to a logarithmic factor, to a conjecture of Hytönen and Lacey. Moreover, we give an example to show that our bounds with the logarithmic factors can be arbitrarily smaller than the previously known bounds (both with one supremum and two suprema).
Keywords:
establish several mixed p a infty bounds calder zygmund operators only involve supremum address cases infty part constant measured using exponential logarithmic definition using fujii wilson definition particular answer question first author provide answer logarithmic factor conjecture hyt nen lacey moreover example bounds logarithmic factors arbitrarily smaller previously known bounds supremum suprema
Affiliations des auteurs :
Andrei K. Lerner 1 ; Kabe Moen 2
@article{10_4064_sm219_3_5,
author = {Andrei K. Lerner and Kabe Moen},
title = {Mixed $A_p$-$A_{\infty} $ estimates with one supremum},
journal = {Studia Mathematica},
pages = {247--267},
publisher = {mathdoc},
volume = {219},
number = {3},
year = {2013},
doi = {10.4064/sm219-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-5/}
}
TY - JOUR
AU - Andrei K. Lerner
AU - Kabe Moen
TI - Mixed $A_p$-$A_{\infty} $ estimates with one supremum
JO - Studia Mathematica
PY - 2013
SP - 247
EP - 267
VL - 219
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-5/
DO - 10.4064/sm219-3-5
LA - en
ID - 10_4064_sm219_3_5
ER -
Andrei K. Lerner; Kabe Moen. Mixed $A_p$-$A_{\infty} $ estimates with one supremum. Studia Mathematica, Tome 219 (2013) no. 3, pp. 247-267. doi: 10.4064/sm219-3-5
Cité par Sources :