Domination of operators in the non-commutative setting
Studia Mathematica, Tome 219 (2013) no. 1, pp. 35-67
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider majorization problems in the non-commutative setting. More specifically, suppose $E$ and $F$ are ordered normed spaces (not necessarily lattices), and $0 \leq T \leq S$ in $B(E,F)$. If $S$ belongs to a certain ideal (for instance, the ideal of compact or Dunford–Pettis operators), does it follow that $T$ belongs to that ideal as well? We concentrate on the case when $E$ and $F$ are $C^*$-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for $C^*$-algebras $\mathcal {A}$ and ${\mathcal {B}}$, the following are equivalent: (1) at least one of the two conditions holds: (i) $\mathcal {A}$ is scattered, (ii) ${\mathcal {B}}$ is compact; (2) if $0 \leq T \leq S : \mathcal {A}\to {\mathcal {B}}$, and $S$ is compact, then $T$ is compact.
Keywords:
consider majorization problems non commutative setting specifically suppose ordered normed spaces necessarily lattices leq leq belongs certain ideal instance ideal compact dunford pettis operators does follow belongs ideal concentrate * algebras preduals von neumann algebras non commutative function spaces particular * algebras mathcal mathcal following equivalent least conditions holds mathcal scattered mathcal compact nbsp leq leq mathcal mathcal compact compact
Affiliations des auteurs :
Timur Oikhberg 1 ; Eugeniu Spinu 2
@article{10_4064_sm219_1_3,
author = {Timur Oikhberg and Eugeniu Spinu},
title = {Domination of operators in the non-commutative setting},
journal = {Studia Mathematica},
pages = {35--67},
publisher = {mathdoc},
volume = {219},
number = {1},
year = {2013},
doi = {10.4064/sm219-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-3/}
}
TY - JOUR AU - Timur Oikhberg AU - Eugeniu Spinu TI - Domination of operators in the non-commutative setting JO - Studia Mathematica PY - 2013 SP - 35 EP - 67 VL - 219 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-3/ DO - 10.4064/sm219-1-3 LA - en ID - 10_4064_sm219_1_3 ER -
Timur Oikhberg; Eugeniu Spinu. Domination of operators in the non-commutative setting. Studia Mathematica, Tome 219 (2013) no. 1, pp. 35-67. doi: 10.4064/sm219-1-3
Cité par Sources :