Domination of operators in the non-commutative setting
Studia Mathematica, Tome 219 (2013) no. 1, pp. 35-67

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider majorization problems in the non-commutative setting. More specifically, suppose $E$ and $F$ are ordered normed spaces (not necessarily lattices), and $0 \leq T \leq S$ in $B(E,F)$. If $S$ belongs to a certain ideal (for instance, the ideal of compact or Dunford–Pettis operators), does it follow that $T$ belongs to that ideal as well? We concentrate on the case when $E$ and $F$ are $C^*$-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for $C^*$-algebras $\mathcal {A}$ and ${\mathcal {B}}$, the following are equivalent: (1) at least one of the two conditions holds: (i) $\mathcal {A}$ is scattered, (ii) ${\mathcal {B}}$ is compact; (2) if $0 \leq T \leq S : \mathcal {A}\to {\mathcal {B}}$, and $S$ is compact, then $T$ is compact.
DOI : 10.4064/sm219-1-3
Keywords: consider majorization problems non commutative setting specifically suppose ordered normed spaces necessarily lattices leq leq belongs certain ideal instance ideal compact dunford pettis operators does follow belongs ideal concentrate * algebras preduals von neumann algebras non commutative function spaces particular * algebras mathcal mathcal following equivalent least conditions holds mathcal scattered mathcal compact nbsp leq leq mathcal mathcal compact compact

Timur Oikhberg 1 ; Eugeniu Spinu 2

1 Department of Mathematics University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A.
2 Department of Mathematical and Statistical Sciences University of Alberta Edmonton, AB T6G 2G1, Canada
@article{10_4064_sm219_1_3,
     author = {Timur Oikhberg and Eugeniu Spinu},
     title = {Domination of operators in the non-commutative setting},
     journal = {Studia Mathematica},
     pages = {35--67},
     publisher = {mathdoc},
     volume = {219},
     number = {1},
     year = {2013},
     doi = {10.4064/sm219-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-3/}
}
TY  - JOUR
AU  - Timur Oikhberg
AU  - Eugeniu Spinu
TI  - Domination of operators in the non-commutative setting
JO  - Studia Mathematica
PY  - 2013
SP  - 35
EP  - 67
VL  - 219
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-3/
DO  - 10.4064/sm219-1-3
LA  - en
ID  - 10_4064_sm219_1_3
ER  - 
%0 Journal Article
%A Timur Oikhberg
%A Eugeniu Spinu
%T Domination of operators in the non-commutative setting
%J Studia Mathematica
%D 2013
%P 35-67
%V 219
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-3/
%R 10.4064/sm219-1-3
%G en
%F 10_4064_sm219_1_3
Timur Oikhberg; Eugeniu Spinu. Domination of operators in the non-commutative setting. Studia Mathematica, Tome 219 (2013) no. 1, pp. 35-67. doi: 10.4064/sm219-1-3

Cité par Sources :