The growth speed of digits in infinite iterated function systems
Studia Mathematica, Tome 217 (2013) no. 2, pp. 139-158

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\{f_n\}_{n\geq 1}$ be an infinite iterated function system on $[0,1]$ satisfying the open set condition with the open set $(0,1)$ and let $\varLambda $ be its attractor. Then to any $x\in \varLambda $ (except at most countably many points) corresponds a unique sequence $\{a_n(x)\}_{n\ge 1}$ of integers, called the digit sequence of $x$, such that $$ x=\lim_{n\rightarrow \infty }f_{a_1(x)}\circ \cdots \circ f_{a_n(x)}(1). $$ We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set $$ \left \{x\in \varLambda : a_n(x)\in B \ (\forall n\ge 1), \lim_{n\to \infty }a_n(x)=\infty \right \} $$ for any infinite subset $B\subset \mathbb N$, a question posed by Hirst for continued fractions. Also we generalize Łuczak's work on the dimension of the set $$ \{x\in \varLambda : a_n(x)\ge a^{b^n} \ \text {for infinitely many}\ n\in \mathbb N\} $$ with $a,b>1$. We will see that the dimension of the sets above is tightly connected with the convergence exponent of the contraction ratios of the sequence $\{f_n\}_{n\ge 1}$.
DOI : 10.4064/sm217-2-3
Keywords: geq infinite iterated function system satisfying set condition set varlambda its attractor varlambda except countably many points corresponds unique sequence integers called digit sequence lim rightarrow infty circ cdots circ investigate growth speed digits general infinite iterated function system precisely determine dimension set varlambda forall lim infty infty right infinite subset subset mathbb question posed hirst continued fractions generalize uczaks work dimension set varlambda text infinitely many mathbb see dimension sets above tightly connected convergence exponent contraction ratios sequence

Chun-Yun Cao 1 ; Bao-Wei Wang 2 ; Jun Wu 2

1 College of Science Huazhong Agricultural University 430070 Wuhan, P.R. China
2 School of Mathematics and Statistics Huazhong University of Science and Technology 430074 Wuhan, P.R. China
@article{10_4064_sm217_2_3,
     author = {Chun-Yun Cao and Bao-Wei Wang and Jun Wu},
     title = {The growth speed of digits
 in infinite iterated function systems},
     journal = {Studia Mathematica},
     pages = {139--158},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2013},
     doi = {10.4064/sm217-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-3/}
}
TY  - JOUR
AU  - Chun-Yun Cao
AU  - Bao-Wei Wang
AU  - Jun Wu
TI  - The growth speed of digits
 in infinite iterated function systems
JO  - Studia Mathematica
PY  - 2013
SP  - 139
EP  - 158
VL  - 217
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-3/
DO  - 10.4064/sm217-2-3
LA  - en
ID  - 10_4064_sm217_2_3
ER  - 
%0 Journal Article
%A Chun-Yun Cao
%A Bao-Wei Wang
%A Jun Wu
%T The growth speed of digits
 in infinite iterated function systems
%J Studia Mathematica
%D 2013
%P 139-158
%V 217
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-3/
%R 10.4064/sm217-2-3
%G en
%F 10_4064_sm217_2_3
Chun-Yun Cao; Bao-Wei Wang; Jun Wu. The growth speed of digits
 in infinite iterated function systems. Studia Mathematica, Tome 217 (2013) no. 2, pp. 139-158. doi: 10.4064/sm217-2-3

Cité par Sources :