The growth speed of digits
in infinite iterated function systems
Studia Mathematica, Tome 217 (2013) no. 2, pp. 139-158
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\{f_n\}_{n\geq 1}$ be an infinite iterated function system on $[0,1]$ satisfying the open set condition with the open set $(0,1)$ and let $\varLambda $ be its attractor. Then to any $x\in \varLambda $ (except at most countably many points) corresponds a unique sequence $\{a_n(x)\}_{n\ge 1}$ of integers, called the digit sequence of $x$, such that
$$ x=\lim_{n\rightarrow \infty }f_{a_1(x)}\circ \cdots \circ f_{a_n(x)}(1). $$ We investigate the growth speed of the digits in a general infinite iterated function system. More precisely, we determine the dimension of the set $$ \left \{x\in \varLambda : a_n(x)\in B \ (\forall n\ge 1),
\lim_{n\to \infty }a_n(x)=\infty \right \} $$ for any infinite subset $B\subset \mathbb N$, a question posed by Hirst for continued fractions. Also we generalize Łuczak's work on the dimension of the set $$ \{x\in \varLambda : a_n(x)\ge a^{b^n} \ \text {for infinitely many}\ n\in \mathbb N\} $$ with $a,b>1$. We will see that the dimension of the sets above is tightly connected with the convergence exponent of the contraction ratios of the sequence $\{f_n\}_{n\ge 1}$.
Keywords:
geq infinite iterated function system satisfying set condition set varlambda its attractor varlambda except countably many points corresponds unique sequence integers called digit sequence lim rightarrow infty circ cdots circ investigate growth speed digits general infinite iterated function system precisely determine dimension set varlambda forall lim infty infty right infinite subset subset mathbb question posed hirst continued fractions generalize uczaks work dimension set varlambda text infinitely many mathbb see dimension sets above tightly connected convergence exponent contraction ratios sequence
Affiliations des auteurs :
Chun-Yun Cao 1 ; Bao-Wei Wang 2 ; Jun Wu 2
@article{10_4064_sm217_2_3,
author = {Chun-Yun Cao and Bao-Wei Wang and Jun Wu},
title = {The growth speed of digits
in infinite iterated function systems},
journal = {Studia Mathematica},
pages = {139--158},
publisher = {mathdoc},
volume = {217},
number = {2},
year = {2013},
doi = {10.4064/sm217-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-3/}
}
TY - JOUR AU - Chun-Yun Cao AU - Bao-Wei Wang AU - Jun Wu TI - The growth speed of digits in infinite iterated function systems JO - Studia Mathematica PY - 2013 SP - 139 EP - 158 VL - 217 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-3/ DO - 10.4064/sm217-2-3 LA - en ID - 10_4064_sm217_2_3 ER -
Chun-Yun Cao; Bao-Wei Wang; Jun Wu. The growth speed of digits in infinite iterated function systems. Studia Mathematica, Tome 217 (2013) no. 2, pp. 139-158. doi: 10.4064/sm217-2-3
Cité par Sources :