$L^p$ spectral multipliers on the free group $N_{3,2}$
Studia Mathematica, Tome 217 (2013) no. 1, pp. 41-55
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $L$ be a homogeneous sublaplacian on the $6$-dimensional free $2$-step nilpotent Lie group $N_{3,2}$ on three generators. We prove a theorem of Mikhlin–Hörmander type for the functional calculus of $L$, where the order of differentiability $s > 6/2$ is required on the multiplier.
Keywords:
homogeneous sublaplacian dimensional step nilpotent lie group three generators prove theorem mikhlin rmander type functional calculus where order differentiability required multiplier
Affiliations des auteurs :
Alessio Martini 1 ; Detlef Müller 1
@article{10_4064_sm217_1_3,
author = {Alessio Martini and Detlef M\"uller},
title = {$L^p$ spectral multipliers on the free group $N_{3,2}$},
journal = {Studia Mathematica},
pages = {41--55},
year = {2013},
volume = {217},
number = {1},
doi = {10.4064/sm217-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-3/}
}
Alessio Martini; Detlef Müller. $L^p$ spectral multipliers on the free group $N_{3,2}$. Studia Mathematica, Tome 217 (2013) no. 1, pp. 41-55. doi: 10.4064/sm217-1-3
Cité par Sources :